Une identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation.
Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes.
Les fonctions trigonométriques sont définies géométriquement ou analytiquement. Elles servent beaucoup en intégration, pour intégrer des fonctions « non trigonométriques » : un procédé habituel consiste à effectuer un changement de variable en utilisant une fonction trigonométrique, et à simplifier ensuite l'intégrale obtenue avec les identités trigonométriques.
Notation : si ƒest une fonction trigonométrique, ƒ2 désigne la fonction qui à tout réel xassocie le carré de ƒ(x). Par exemple : cos2x = (cos x)2.
Note : Toutes ces formules sont également utilisables pour des ajouts d'angles, il suffit pour cela de prendre l'opposé : par exemple,. Il suffit ensuite d'appliquer la formule de simplification correspondante de la première colonne.
Les deux formules principales sont les formules d'addition pour le cosinus et le sinus[3],[4] :
En remplaçant bpar son opposé, on obtient aussi les formules de différence[4] :
Démonstration géométrique des formules d'addition de cos(a+b) et sin(a+b)
Le moyen le plus rapide pour les démontrer est, à partir de la définition analytique du cosinus et du sinus, d'utiliser les formules d'Euler.
Il existe de nombreuses autres démonstrations possibles, utilisant les propriétés d'une corde dans un cercle, la relation entre cosinus d'un angle et produit scalaire (en évaluant de deux façons différentes le produit scalaire des vecteurs (cos a, sin a) et (cos b, sin b), la propriété du changement de repère ou encore la démonstration matricielle ci-dessous.
Les formules s'obtiennent alors par identification.
On en déduit les formules d'addition et de différence pour la tangente et la cotangente. Par exemple pour l'addition[N 1] :
.
Exemple
.
Plus généralement, la tangente d'une somme de n angles[5] (resp. la cotangente) s'exprime en fonction des tangentes (resp. des cotangentes) de ces angles :
Une autre conséquence intéressante de la formule d'addition pour sin est qu'elle permet de ramener la combinaison linéaire d'un sinus et d'un cosinus à un sinus :
où
si α est positif et sinon.
Appelées aussi « formules d'angle double », elles peuvent être obtenues, pour les deux premières[6], en remplaçant a et b par xdans les formules d'addition ou en utilisant la formule de Moivre avec n= 2. Les deux suivantes se déduisent de l'identité cos2x + sin2x = 1.
Ces formules permettent de simplifier des calculs trigonométriques en se ramenant à des calculs sur des fractions rationnelles. Elles permettent aussi de déterminer l'ensemble des points rationnels du cercle unité.
Transformation de sommes en produits, ou antilinéarisationmodifier
(équivalente à la précédente en remplaçant q par –q).
Il suffit de remplacer a par p + q/2 et b par p – q/2 dans les formules de transformation de produit en somme. On en déduit une généralisation des formules de la tangente de l'angle moitié :
La linéarisation d'une expression cospx sinqx a pour but de l'exprimer comme combinaison linéaire de divers cos(nx) (si q est pair) ou sin(nx) (si q est impair) — par exemple pour en calculer une primitive. On peut utiliser soit les formules de transformation de produits en sommes ci-dessus, soit les formules d'Euler :
Soit ABC un triangle, dans lequel on utilise les notations usuelles : d'une part α, β et γ pour les mesures des angles et, d'autre part, a, b et c pour les longueurs des côtés respectivement opposés à ces angles (voir figure ci-contre). Alors on a :
Une telle identité est un exemple d'identité qui ne contient pas de variable ; elle s'obtient à partir de l'égalité :
.
Autres exemples :
Les facteurs 1, 2, 4, 5, 8, 10 sont les entiers inférieurs à 21/2 qui n'ont pas de facteur commun avec 21.
Ces exemples sont des conséquences d'un résultat de base sur les polynômes cyclotomiques ; les cosinus sont les parties réelles des racines de ces polynômes ; la somme des zéros donne la valeur de la fonction de Möbius en 21 (dans le tout dernier cas qui précède) ; seulement la moitié des racines sont présentes dans ces relations.
Dans cet article, on trouvera des identités faisant intervenir l'angle , comme
et dans celui-ci, des identités faisant intervenir l'angle , comme .
En analyse, il est essentiel que les angles qui apparaissent comme arguments de fonctions trigonométriques soient mesurés en radians ; s'ils sont mesurés en degrés ou dans n'importe quelle autre unité, alors les relations reportées ci-dessous deviennent fausses.
L'argument géométrique[11] consiste (cf. figure ci-contre) à encadrer l'aire d'un secteur circulaire du disque unité, d'angle θ = x, par celle de deux triangles :
l'aire du triangle OAD, contenu dans le secteur, vaut (sinθ)/2 ;
celle du secteur vaut par définition θ/2 ;
celle du triangle OCD, qui le contient, vaut (tanθ)/2.
La preuve analytique consiste à considérer un réel y (fourni par le théorème des accroissements finis) tel que
Les dérivées de sin et cos peuvent se déduire l'une de l'autre par décalage de π/2. Elles sont :
Exemples de démonstrations
Si les fonctions trigonométriques sont définies géométriquement, on se convainc d'abord de l'encadrement ci-dessus, dont on déduit immédiatement (grâce au théorème des gendarmes)Cette limite permet de calculer les dérivées de sin et cos, à partir de la définition du nombre dérivé comme limite d'un taux d'accroissement, en transformant la différence en produit dans le numérateur de ce taux.
Si les fonctions trigonométriques sont définies analytiquement, alors les dérivées peuvent être obtenues en dérivant les séries entières terme à terme.
Les autres fonctions trigonométriques peuvent être dérivées en utilisant les identités précédentes et les règles de dérivation. Par exemple :
↑Pour une démonstration du développement de tan(a + b), voir par exemple ce chapitre de la leçon « Trigonométrie » sur Wikiversité. Celui de cot(a + b) se démontre de même.