Ouvrir le menu principal
Page d'aide sur l'homonymie Pour les articles homonymes, voir Schéma.

En géométrie algébrique, un schéma est un espace localement annelé localement isomorphe à un schéma affine. Le faisceau est appelé le faisceau structural.

Un schéma affine est le spectre d'un anneau commutatif, muni de son faisceau structural.

IntuitionModifier

Un schéma est avant tout un objet géométrique.

Telle qu'elle a été inventée, cette notion généralise la notion de variété algébrique. À une variété algébrique sur un corps, la théorie des schémas ajoute des points qui ne sont pas nécessairement fermés (grosso modo, ce sont des points dont les coordonnées sont des variables).

En théorie des nombres, pour étudier les propriétés arithmétiques d'une variété algébrique V sur  , il est utile de connaître son comportement « modulo p » pour tout nombre premier p. Pour ce faire, on essaie d'étendre V d'une manière raisonnable en un schéma sur l'anneau des entiers relatifs  . Ce schéma peut être vu comme une famille de variétés algébriques {V, Vp} où Vp est une variété algébrique sur le corps fini premier  .

HistoireModifier

La notion de schéma est due à Alexandre Grothendieck, qui l'a inventée dans le but de démontrer les conjectures de Weil (qui sont maintenant un théorème, démontré par Pierre Deligne) vers l'année 1958. La théorie des schémas est développée dans le grand traité de fondements, inachevé (mais très complet !), les Éléments de géométrie algébrique, plus connu des mathématiciens sous le nom des EGA.

Quelques définitions de baseModifier

Propriétés de schémasModifier

Si   est un schéma, un sous-schéma ouvert de   est un ouvert   de   muni du faisceau  . C'est un espace localement annelé, et en fait un schéma. Tout ouvert de   est toujours muni de cette structure de sous-schéma ouvert.

Un schéma affine   est dit noethérien si   est un anneau noethérien.

Un schéma noethérien est un schéma qui est réunion finie d'ouverts affines noethériens.

Un schéma localement noethérien est un schéma dont tout point possède un voisinage ouvert affine noethérien.

Un schéma réduit est un schéma tel que l'anneau   soit réduit (i.e. sans élément nilpotent non nul) pour tout ouvert  .

On dit que   est irréductible (resp. connexe) si l'espace topologique sous-jacent vérifie cette propriété.

On dit que   est intègre s'il est irréductible et réduit. Cela revient à dire que l'anneau   est intègre pour tout ouvert  .

Un schéma régulier est un schéma localement noethérien   tel que ses anneaux locaux   sont réguliers en tout point  .

Propriétés de morphismesModifier

Un morphisme de schémas   entre deux schémas est simplement un morphisme en tant qu'espaces localement annelés.

Un morphisme de schémas   induit via le morphisme de faisceaux   un homomorphisme d'anneaux  .

Proposition — L'application canonique   est bijective et fonctorielle en   et en  .

  • En particulier, se donner une structure de  -schéma sur   équivaut à se donner une structure de  -algèbre sur  .
  • La catégorie des schémas affines est équivalente à la catégorie des anneaux commutatifs unitaires.

Un morphisme affine est un morphisme f tel que pour tout ouvert affine V de Y, l'image réciproque   soit affine. On montre qu'il suffit pour cela que Y soit recouvert par des ouverts affines   dont les images réciproques dans X soient affines.

Un morphisme fini est un morphisme affine f comme ci-dessus tel que de plus   soit fini sur   en tant que module. Il suffit que cette propriété soit vérifiée pour un recouvrement affine particulier de Y.

Schémas au-dessus d'un schéma fixéModifier

On fixe un schéma  . Un  -schéma est un schéma   muni d'un morphisme de schémas  , lequel morphisme est appelé le morphisme structural du  -schéma, et   est appelé schéma de base. Dans les notations, on omet souvent le morphisme structural. Lorsque   est un schéma affine d'anneau  , on parle aussi de  -schéma au lieu de  -schéma.

Tout schéma est, de façon unique, un  -schéma. Cela vient du fait qu'il existe un unique homomorphisme d'anneaux de   dans un anneau donné.

Si   sont des  -schémas, un morphisme de  -schémas de   dans   est un morphisme de schémas   qui est compatible avec les morphismes structuraux :  .

Les  -schémas et les morphismes de  -schémas forment une catégorie, appelée la catégorie des  -schémas, souvent notée  .

RéférencesModifier