Dihydrogène

composé chimique

Dihydrogène
Image illustrative de l’article Dihydrogène
Identification
Nom UICPA dihydrogène
Synonymes

hydrogène

No CAS 1333-74-0
No ECHA 100.014.187
No CE 215-605-7
PubChem 783
No E E949
SMILES
InChI
Apparence sans odeur, incolore, gaz comprimé[1]
Propriétés chimiques
Formule brute H2  [Isomères]
Masse molaire[2] 2,01588 ± 0,00014 g/mol
H 100 %,
Propriétés physiques
fusion −259,1 °C[3]
ébullition −252,76 °C[3]
Solubilité 21,4 ml dans 1 l d'eau
(soit 1,92 mg/l) (°C)[4],[5]
8,5 ml dans 1 l d'eau
(soit 0,76 mg/l) (80 °C)[4]
Paramètre de solubilité δ 6,9 MPa1/2 (25 °C)[6]
Masse volumique 0,089 88 g/l (gaz, CNTP),

0,070 8 kg/l (liquide, −253 °C),
0,070 6 kg/l (solide, −262 °C)[3]

d'auto-inflammation 500 à 571 °C[1]
Point d’éclair gaz inflammable[1]
Limites d’explosivité dans l’air 476 %vol[1]
Pression de vapeur saturante
Point critique 13,0 bar, −239,95 °C[8]
Point triple −259,3467 °C[9];

7,205 kPa abs

Conductivité thermique 42,5 × 10−5 cal cm−1 s−1 K−1 à 16,85 °C
Vitesse du son 1 310 m s−1 (27 °C, 1 atm)[10]
Thermochimie
S0gaz, 1 bar 130,68 J K−1 mol−1
Δfus 0,058 68
Δvap 0,90 kJ mol−1 (1 atm, −252,76 °C)[3]
Cp 14 266 J kg−1 K−1 à 293 K
PCS 285,8 kJ/mol (25 °C, gaz)[11]
PCI 242,7 kJ/mol[12]
Précautions
SGH[14]
SGH02 : InflammableSGH04 : Gaz sous pression
Danger
H220,
SIMDUT[15]
A : Gaz compriméB1 : Gaz inflammable
A, B1,
NFPA 704
gaz :

Symbole NFPA 704.

 

réfrigéré liquide[13]:

Symbole NFPA 704.

 
Transport
23
   1049   

223
   1966   
Inhalation suffocation

Unités du SI et CNTP, sauf indication contraire.

Le dihydrogène est la forme moléculaire de l'élément hydrogène qui existe à l'état gazeux aux conditions normales de température et de pression. Les molécules comportent deux atomes d'hydrogène ; sa formule chimique est H2. Il est également appelé « hydrogène moléculaire » ou, à l'état gazeux, « gaz (d')hydrogène ». Dans le langage courant, lorsqu'il n'y a pas d'ambiguïté avec l'élément chimique du même nom, il est très fréquemment désigné simplement par « hydrogène », et l'on parle parfois simplement de « molécule d'hydrogène » pour la molécule de dihydrogène.

C'est un gaz léger que la gravité terrestre ne peut d'ailleurs retenir. Il fut employé dans les ballons dirigeables de type zeppelin, utilisant les propriétés de la poussée d'Archimède, avant d'être remplacé par l'hélium moins dangereux car non combustible. Il brûle dans l'air en produisant de l'eau, d'où son nom composé par le préfixe « hydro », du grec ὕδωρ (hudôr) signifiant « eau », et par le suffixe « gène », du grec γεννᾰν (gennen), « engendrer ». Il a notamment été utilisé pour la conservation de la viande.

Le dihydrogène possède une température de vaporisation de 20,27 K et une température de fusion de 14,02 K. Sous de très fortes pressions, comme celles qui existent au centre des géantes gazeuses, ces molécules se dissocient et l'hydrogène devient un métal liquide. Dans l'espace, les nuages de H2 sont à la base du processus de formation des étoiles.

HistoriqueModifier

Le premier scientifique connu à avoir décrit la production de dihydrogène est le Suisse Paracelse (1493-1541). Il fait cette découverte en versant du vitriol sur de la poudre de fer, mais ne comprend pas la nature exacte du gaz dégagé au cours de l'expérience.

Le chimiste anglais Henry Cavendish (1731-1810), recommençant les expériences de Paracelse avec plusieurs métaux différents, découvre que le gaz ainsi produit est différent de l'air, est inflammable et a une faible densité. Il appelle ce gaz « air inflammable » (en anglais : inflammable air) et s'aperçoit que sa combustion produit de l'eau. Le dioxygène étant lui nommé « air vital ».

Le chimiste français Antoine Lavoisier ayant confirmé les expériences de Cavendish, propose le mot « hydrogène » pour remplacer l'expression « air inflammable ». Ce mot est formé avec le préfixe hydro (du grec ὕδωρ (hudôr), « eau ») et du suffixe gène (du grec γεννᾰν (gennen), « engendrer »). Le mot hydrogène signifie donc qui engendre l'eau.

Par la suite, dans le domaine scientifique, le mot « hydrogène » sera utilisé pour nommer l'élément chimique H et le mot « dihydrogène » sera utilisé pour la molécule H2.

Sources d'hydrogèneModifier

Le dihydrogène est un gaz très léger. Comme la gravité terrestre ne peut le retenir, il s'échappe naturellement de l'atmosphère terrestre. Par conséquent, il n'est présent que sous forme de traces (0,5 ppmv) dans l'air. Cette rareté atmosphérique fait que la totalité du dihydrogène utilisé est produit industriellement selon divers procédés, à partir de molécules où des atomes d'hydrogène sont chimiquement liés.

Cependant, il existe quelques contextes géologiques où le dihydrogène jaillit naturellement de la Terre[17]. L'on désigne le dihydrogène émanant de ces zones par le terme hydrogène naturel[18].

Hydrogène artificielModifier

La production d'hydrogène fait appel à de nombreux procédés distincts, l'atome d'hydrogène formant nombre de molécules (eau, hydrocarbures, sucresetc.).

Méthode historique de productionModifier

Historiquement, au XIXe siècle, le dihydrogène était obtenu par émission de vapeur d'eau (H2O) dans un tonneau rempli de limailles et copeaux de fer[19]. La vapeur d’eau attaquait le métal, créant d'un côté l’oxyde de fer, libérant du dihydrogène de l'autre. Ce dernier sortait ensuite du tonneau, où il était filtré dans un autre tonneau rempli d’eau. Puis, direct au ballon. Ce dispositif permettait à l’armée de gonfler n’importe où et en quelques heures un ballon d'observation.

Méthodes actuellesModifier

 
Production d'hydrogène par vaporeformage.

Actuellement, l'hydrogène est produit industriellement par deux procédés :

D'autres procédés sont aussi à l'étude, à partir du craquage ou de l'oxydation partielle, qui a l'avantage d'être exothermique.

Vaporeformage d'hydrocarburesModifier

Le vaporeformage d'hydrocarbures est le procédé qui, au début du XXIe siècle, est le plus utilisé au niveau industriel. Son principe repose sur la réaction d'hydrocarbures (méthane…) en présence de vapeur d'eau et de chaleur. La réaction globale s'écrit :

 .

Le rendement énergétique est de l'ordre de 40 à 45 % dans certaines installations[réf. nécessaire]. En pratique industrielle, il est nécessaire d'accélérer la réaction au moyen de catalyseurs ou de brûleurs. Elle a l'inconvénient de produire du dioxyde de carbone, un gaz à effet de serre.

Des technologies catalytiques, ou plus novatrices telles que les reformeurs plasma, sont actuellement à l'étude.

Électrolyse de l'eauModifier

L'électrolyse de l'eau est une technologie qui consiste à faire passer un courant électrique (continu) dans de l'eau (à laquelle on a préalablement ajouté un électrolyte comme la soude caustique) afin d'obtenir la dissociation des molécules d'eau en dihydrogène et dioxygène.

Réaction à l'anode :

2 H2O (l) → O2 (g) + 4 H+ (aq) + 4 e

Réaction à la cathode :

4 H2O (l) + 4 e → 2 H2 (g) + 4 OH (aq)

Réaction dans l'eau :

4 H+ (aq) + 4 OH (aq) → 4 H2O (l)

Réaction globale :

2 H2O (l) → 2 H2 (g) + O2 (g)

où (l), (g) et (aq) signifient respectivement « en phase liquide », « en phase gazeuse » et « en solution aqueuse ».

Cette technologie nécessite de grandes quantités d'électricité. Elle est cependant aujourd'hui efficace d'un point de vue énergétique : l'énergie potentielle du dihydrogène produit correspond à environ 80 % de l'énergie électrique consommée[réf. nécessaire]. Elle est relativement peu utilisée.

Oxydation partielle d'hydrocarburesModifier

Cette réaction est une combustion « riche » dans le sens où l'on vise la production d'un gaz riche en H2 et CO (gaz de synthèse) ; au lieu des produits « classiques » CO2 et H2O.

La réaction s'écrit :

 .

La plupart du temps, on utilise l'air comme comburant. On a alors :

 .

La réaction est exothermique : par exemple, l'enthalpie de la réaction avec le méthane est de −35,7 kJ mol−1.

Tout comme la réaction de vaporeformage, il est nécessaire de catalyser la réaction.

L'intérêt de la réaction d'oxydation partielle réside dans son caractère exothermique (contrairement à la réaction de vaporeformage) qui permet d'aider la catalyse (élévation de température).

L'inconvénient majeur réside dans le fait que les pourcentages de H2 sont inférieurs à ceux obtenus par vaporeformage, à cause de la présence majoritaire de l'azote de l'air. De plus, il y a un risque d'obtenir des NOx.

Action d'un acide sur un métalModifier

On produit du dihydrogène par action d'un acide sur un métal. Exemple :

 .


Action de l'hydroxyde de sodium sur l'aluminiumModifier

On peut également produire du dihydrogène par la réaction d'hydroxyde de sodium avec de l'aluminium, selon la formule :

 
Production par photosynthèse (cyanobactéries)Modifier

Certaines cyanobactéries peuvent décomposer chimiquement l'eau en oxygène et hydrogène à l'aide de réactions photosynthétiques. Ceci permettrait de produire de l'hydrogène à l'aide d'énergie solaire. Des recherches sont en cours dans ce domaine, notamment en termes de génie génétique.

Hydrogène naturelModifier

L'hydrogène produit sur Terre naturellement, par opposition à l'hydrogène produit artificiellement par reformage du méthane ou d'hydrocarbures, est dit hydrogène naturel ou hydrogène natif.

La répartition, les capacités de production et les mécanismes physicochimiques de ses sources ou gisements font encore l'objet d'études exploratoires, au début du XXIe siècle. Ainsi, en avril 2019, le projet de recherche sen4H2 est lancé et cofinancé par l'Agence spatiale européenne[20], qui vise à détecter les émanations naturelles d'hydrogène grâce aux images satellites.

Sources d'hydrogène naturelModifier

La production de dihydrogène naturel au niveau de dorsales[21] est connue depuis les années 1970 et étudiée plus récemment[22]. Il s'agit de réactions de serpentinisation (oxydoréduction d'olivine) entre l'eau et les roches magmatiques affleurantes du manteau terrestre, facilitée par la chaleur de ces réactions exothermiques[23] : l'oxygène des molécules H2O capturé par le fer de la roche, les atomes d'hydrogène sont libres de s'associer en H2. Le dihydrogène ainsi produit s'échappe par des évents hydrothermaux et peut éventuellement réagir à son tour pour former du méthane, puis des hydrocarbures plus lourds[24]. Trop profonds, ces gisements ne peuvent être exploités (en 2018)[25]

Des émissions d'hydrogène ont également été découvertes au milieu des cratons continentaux par le géologue russe Nicolay Larin, à la suite de son travail à propos de l'hypothèse de la Terre hydrurée[22]. L'IFP Énergies nouvelles a confirmé cette découverte, par un communiqué en date du [26], rapportant des émissions localement importantes, sur la plupart des continents, en Russie, aux États-Unis, au Brésil, à Oman ou au Mali. Le phénomène reste encore mal compris et le débat sur le mécanisme exact qui engendre ces émissions n'a pas encore été tranché. Il pourrait s'agir d'hydratation de fer par de l'eau infiltrée, celui-ci étant présent dans les ceintures de roches vertes, présentes dans les cratons[27],[28]. Ainsi, au Kansas, près de Junction City, un gisement a été identifié dans les années 1980 et a fait l'objet d'un regain d'intérêt dans les années 2000[29] ; le dihydrogène y serait issu de telles réactions d'oxydation de fer[30]. En Russie, l'IFP a estimé en 2010 à plusieurs dizaines de milliers de mètres cubes le débit quotidien d'une seule dépression, soit la consommation équivalente de 500 taxis[25].

À Yanartaş, en Turquie, les feux millénaires du Mont Chimère seraient un gaz composé de méthane (87 %), de dihydrogène (7,5 à 11 %) et de diazote (2 à 4,9 %), ayant une double origine : la serpentinisation d'une part, un gaz thermogénique d'autre part[31].

Le Mali est en 2015 le seul pays où l'on exploite l'hydrogène naturel, dans le village de Bourakébougou, à 60 km au nord de Bamako[29]. Le gaz proviendrait d'une « surmaturation du pétrole » vraisemblablement enfoui à proximité[32] et ses réserves sont estimées à environ 1,5 milliard de mètres cubes[réf. nécessaire].

Les gaz volcaniques contiennent souvent des traces de dihydrogène. À Hawaï, une étude spectroscopique effectuée sur un feu de gaz volcanique a montré qu'il s'agissait d'une combustion de dihydrogène[33].

Toute roche ignée contiendrait de l'hydrogène, à hauteur d'environ 5 l/m3[34], par conséquent, tous les forages montrent des dégazages d'hydrogène. Lors de l'expérience russe du forage sg3, les boues extraites du trou ont ainsi décrites comme bouillonnant de ce gaz[35][réf. à confirmer].

EnjeuxModifier

Contrairement à l'hydrogène artificiel, qui nécessite de l'énergie pour être produit, ce qui le réduit à n'être qu'un vecteur d'énergie, l'hydrogène naturel est une véritable source d'énergie[29],[36], dont la combustion ne produit que de l'eau.

Utilisations industriellesModifier

La consommation mondiale d’hydrogène est aujourd’hui d’environ 50 millions de tonnes par an. La majeure partie de la production de dihydrogène est consommée sur place, dans l’industrie chimique et pétrochimique principalement : synthèse de l'ammoniac (50 %), raffinage et désulfuration des hydrocarbures (37 %), synthèse du méthanol (12 %).[source insuffisante]

Les principales utilisations industrielles du dihydrogène sont :

  • le procédé Haber-Bosch (production de l'ammoniac), l'hydrogénation des graisses et des huiles et la production de méthanol ;
  • la fabrication de l'acide chlorhydrique, le soudage, les carburants pour fusées et la réduction de minerais métalliques ;
  • le dihydrogène liquide est utilisé pour les recherches à très basses températures, y compris l'étude de la supraconductivité ;
  • le dihydrogène est utilisé comme gaz traceur pour effectuer des opérations de détection de fuite dans des domaines variés (raffinage pétrolier, automobile, installations de chauffage, réseau de distribution d'eau, réservoirs d'avions, etc.) ;
  • le dihydrogène est un additif alimentaire autorisé sous le code E949, dans la catégorie des traceurs ;
  • le dihydrogène est aussi utilisé comme fluide caloporteur dans certaines machines de haute puissance (alternateur synchrone de centrale par exemple) ;
  • le dihydrogène était utilisé dans les aérostats car il est quatorze fois moins dense que l'air, mais il a été remplacé par l'hélium pour des raisons de sécurité ; il est encore utilisé pour certains ballons-sondes dans des stations éloignées.
  • Le dihydrogène a été testé comme carburant pour l'aéronautique lors d'un vol le 15 avril 1988 avec le Tupolev Tu-155[37].

Certains isotopes de l'hydrogène ont également une utilisation industrielle ou technologique particulière :

StockageModifier

À ce jour, trois grandes voies de stockage d'hydrogène à bord d'un véhicule sont envisagées[38] :

  • stockage sous forme de gaz comprimé ;
  • stockage sous forme liquide à basse température ;
  • stockage sous forme solide, l'hydrogène étant alors lié à d'autres composants (par adsorption ou sous la forme d'un composé chimique).

Gaz compriméModifier

C'est la forme la plus commune de stockage du dihydrogène.

Le stockage gazeux sous forme comprimé (actuellement 350 bar) permet d'atteindre une densité massique satisfaisante avec des réservoirs composites. La densité volumique de stockage reste faible : une pression de 700 bar est inévitable pour rendre la technologie compétitive.

La technologie existe et est couramment utilisée. Son inconvénient réside dans l'énergie nécessaire à la compression et dans la faible efficacité en termes d'encombrement en comparaison aux autres méthodes. Cet encombrement est une des difficultés pour l'utilisation du dihydrogène sous forme de gaz comprimé dans les applications automobiles.

Stockage liquide (cryogénique)Modifier

Le stockage liquide à 20 K (−253 °C) sous 10 bar permet d'atteindre des densités volumique et massique intéressantes mais nécessite des réservoirs à l'isolation thermique poussée afin de minimiser l'évaporation.

La technologie est existante. Elle a une meilleure efficacité volumique que le stockage de gaz comprimé (70 kg/m3 contre 10 kg/m3 à 115 bar et °C). Cependant, cet avantage est modéré par le volume relativement important des enceintes isolantes nécessaires.

D'autre part, il faut une énergie importante pour passer en phase liquide : la liquéfaction consomme 30 à 40 % du contenu énergétique du gaz et la déperdition en utilisation réelle est importante (actuellement 1,25 pour mille par heure[39]), pénalisant fortement le stockage au-delà d'une semaine.

Cette technique est notamment utilisée dans le domaine spatial où, malgré le faible délai de mise en œuvre, le remplissage est continu jusqu'au dernier moment.

Hydrures métalliquesModifier

Le stockage sur des substrats sous forme adsorbée, notamment sur des hydrures métalliques, présente une densité volumique très intéressante mais une densité massique faible. De plus, la cinétique, la température et la pression de cyclage restent des points durs à maîtriser.

Les atomes d'hydrogène sont stockés dans certains composés métalliques. On récupère le dihydrogène en chauffant ou en diminuant la pression. Cette technique est aujourd'hui mal maîtrisée. Elle a l'inconvénient de demander un dihydrogène extrêmement pur afin d'éviter de détruire la capacité d'absorption des hydrures. Le chauffage pour récupérer le gaz est également un handicap. Ce type de stockage, qui continue de faire l'objet de recherches, est au stade du développement industriel et certains projets démonstrateurs[40] sont prévus, par exemple avec la start-up McPhy qui développe la technologie d'hydrure de magnésium (technologie issue du CNRS, institut NEEL).

Capacité de stockage de certains hydrures.

Hydrure Pourcentage massique
de H2 contenu
LaNi5H6,5
1,4
ZnMn2H3,6
1,8
TiFeH2
1,9
Mg2NiH4
3,6
VH2
3,8
MgH2
7,6

Un métal très étudié est le palladium qui, via son hydrure PdH2, a la capacité d'absorber une large quantité d'hydrogène au sein de son réseau cristallin. À température ambiante et pression atmosphérique, le palladium peut absorber jusqu'à 900 fois son volume d'hydrogène gaz, le processus étant réversible[41].

Stockage par adsorption sur du carboneModifier

Cette technique permet de stocker en surface de certaines structures de carbone, telles que du charbon actif ou des nanotubes, les molécules de dihydrogène. Elle permet de stocker 0,05 à 2 % en masse de dihydrogène.

Ce type de stockage est au stade de recherche.

Propriétés chimiquesModifier

Test de reconnaissanceModifier

Afin de tester la présence de dihydrogène, on approche une bûchette enflammée d'un tube à essai contenant du dihydrogène. La réaction chimique, amorcée par la source de chaleur, avec l'oxygène de l'air produit un bruit caractéristique appelé « jappement » ou « aboiement ».

CombustionModifier

La combustion du dihydrogène dans le dioxygène, qui produit de l'eau, est particulièrement violente (voir test de reconnaissance) et très exothermique : son pouvoir calorifique est de (valeurs pour 25 °C [ou 15 °C] sous 1 atm) 141,86 MJ/kg [ou 141,79 MJ/kg], soit une enthalpie de combustion standard, à 25 °C, de –285,84 kJ/mol, à 100 °C, de –283,45 kJ/mol (H2 gazeux, O2 gazeux, mais H2O liquide, comme PCS, pouvoir calorifique supérieur), mais de 120,1 MJ/kg [ou 119,93 MJ/kg], soit une enthalpie de combustion, à 100 °C, de –242,8 kJ/mol (H2 gazeux, O2 gazeux, H2O vapeur, comme PCI, pouvoir calorifique inférieur, en comptant 40,660 kJ/mol pour la vaporisation de l'eau à 100 °C ), contre, par exemple, seulement 49,51 MJ/kg pour le butane. Cette propriété en fait un carburant de choix pour les engins spatiaux mais rend son stockage dangereux.

La même oxydation plus lente est utilisée pour produire du courant électrique dans les piles à combustible.

Formes ortho et paraModifier

Le dihydrogène gazeux est un mélange de deux types de molécules isomériques qui diffèrent l'une de l'autre par le spin de leurs noyaux atomiques. Ces deux formes sont appelées ortho- et para-hydrogène, et la forme ortho (spins parallèles, état triplet) correspond à un état excité qui n'existe pas à l'état pur. Dans les conditions normales de température et de pression, par excitation thermique l'hydrogène est composé à 75 % de la forme ortho et à 25 % de la forme para. À 77 K le mélange à l'équilibre (atteint spontanément en plusieurs jours, mais en quelques heures avec des catalyseurs) est à 50 %. Mais à très basse température, la forme ortho se transforme entièrement en l'état para (spins antiparallèles, état singulet) avec le temps. Les deux formes ont des niveaux énergétiques légèrement différents et donc des propriétés physico-chimiques légèrement différentes. Par exemple, le point de fusion et le point d'ébullition du para-hydrogène sont environ 0,1 K plus bas que ceux de l'ortho-.[réf. nécessaire]

Production et usagesModifier

Dans un rapport publié en , l'Agence internationale de l'énergie note la polyvalence de l'hydrogène, qui peut être produit à partir de tous les combustibles fossiles, des énergies renouvelables et du nucléaire, peut être transporté sous forme gazeuse ou liquide et être transformé en électricité ou en méthane pour un large éventail d'usages[42].

On peut distinguer trois catégories d'hydrogène, selon leur mode de production[43] :

L'hydrogène produit dans la croûte terrestre (par diagenèse et radiolyse), ainsi que l'hydrogène primordial (présent depuis la formation de la Terre) sont d'autres sources envisageables, mais qui n'ont pas encore été explorées[45].

En 2020, le coût de l'hydrogène gris se situe entre 1 et 2 €/kg contre 4 à 7 €/kg pour de l'hydrogène vert produit de façon industrielle. D'après Julien Chauvet, directeur Hydrogène France d'Engie Solutions, « le kilo permet de parcourir 100 km ce qui le met à parité avec l’essence et s’approche du diesel pour les véhicules légers »[46].

Production industrielleModifier

L'hydrogène est actuellement presque entièrement produit à partir de gaz naturel, de pétrole et de charbon.

Pour ses propres besoins, l'industrie produit de l'hydrogène (ex. : en France, plus de 900 000 t/an d'hydrogène, notamment pour la désulfurisation de carburants pétroliers et pour fabriquer l'ammoniac des engrais nitratés — l'hydrogène est alors un intrant chimique et non un vecteur énergétique). Le processus industriel le moins cher pour produire cet hydrogène, en 2018, est le reformage d'hydrocarbures, le plus souvent par vaporeformage du gaz naturel (lequel est essentiellement composé de méthane). À une température comprise entre 700 et 1 100 °C, la vapeur d'eau réagit avec le méthane en donnant du monoxyde de carbone et de l'hydrogène. La purification de l'hydrogène étant plus facile sous forte pression, le reformage est réalisé sous une pression de vingt bars. Le mélange hydrogène/monoxyde de carbone est communément appelé « gaz de synthèse ». Si la réaction est faite en présence d'un excès de vapeur d'eau, le monoxyde de carbone est oxydé au niveau d'oxydation supérieur, conduisant au dioxyde de carbone, ce qui augmente la production d'hydrogène.

La production industrielle « traditionnelle » d'hydrogène à partir d'hydrocarbures fossiles a un mauvais bilan carbone et est très émettrice de gaz à effet de serre, atteignant presque dix millions de tonnes d'équivalent CO2 par an vers 2015-2017, soit 7,5 % des émissions de gaz à effet de serre de l'industrie française, d'après l'ADEME en 2018[47], et des émissions de CO2 équivalentes en 2019 à celles de l'Indonésie et du Royaume-Uni réunis. Mais le coût de production de l'hydrogène à partir d'électricité renouvelable, élevé, pourrait baisser de 30 % d'ici 2030 grâce au déclin des coûts des énergies renouvelables et aux économies d'échelle[42].

La société Air liquide possède une maîtrise particulière de ce processus. En 2015, elle a mis en service en Arabie saoudite, sur le site de Yanbu, une unité ayant une capacité totale de production d'hydrogène de 340 000 m3/h aux CNTP[48].

En 2019, l'agence australienne d'énergie renouvelable (ARENA) va aider à hauteur de 9,41 millions de dollars australiens (8,5 M€) un projet du Groupe Hazer (compagnie d'énergie renouvelable australienne) visant à convertir du biogaz issu de méthanisation de boues d'épuration en hydrogène et en graphite. Hazer veut construire une usine démonstratrice de 15,8 millions de dollars US à Munster (Australie de l'Ouest)[49].

Filière hydrogène et enjeux pour le développement durableModifier

La filière hydrogène produit, stocke, promeut et valorise l'hydrogène et la recherche sur l'hydrogène. En 2015, des expérimentations d'hydrogène vert (décarboné) sont en cours, mais ce gaz est encore « majoritairement produit à partir de gaz naturel (fossile) et employé comme composant chimique dans des procédés industriels », avec un mauvais bilan carbone et une contribution notable à l'effet de serre. La filière est néanmoins présentée comme intéressante pour le développement durable[Par qui ?], car :

  • s'il est fabriqué par électrolyse d'eau et de manière décarbonée en valorisant des surplus d'électricité renouvelables intermittentes (éolien et photovoltaïque principalement), ce vecteur énergétique peut être stocké[25], notamment en cycles inter-saisonniers, puis utilisé en méthanation et/ou injecté dans le réseau de gaz (6 à 20 % en volume selon les conditions), facilitant alors l'équilibre et la souplesse du réseau électrique ;
  • l'électricité stockable grâce à sa conversion en gaz (hydrogène ou méthane) permettrait de stocker « de l'ordre du terrawatt-heure par an » et jusqu'à plusieurs dizaines de terawatts-heures par an d'électricité selon l'ADEME, quand le taux de pénétration des énergies renouvelables dans le mix électrique atteindra 80 %[50], et à ce titre pourrait « apporter une contribution importante à la transition vers un modèle énergétique décarboné, notamment dans le secteur du stockage d’énergie »[51] ;
  • l'hydrogène peut servir à produire localement de l'électricité, mais avec une perte de rendement ; celui de l'électrolyse de l'eau approche 70 %, mais le rendement global d'une production électrique à partir de H2 serait de 20 % à 30 % selon les applications (ADEME, 2018)[50]) ;
  • l'hydrogène est compatible avec l'autoconsommation d'un logement, îlot ou quartier, permettant des stockages sur plusieurs jours, semaines ou mois, en complément de batteries plus utiles pour le stockage à court terme. Il serait déjà économiquement justifié[Comment ?] dans les zones non interconnectées au réseau électrique continental (ex. : îles isolées, collectivités française d'outre-mer où la production électrique dépend encore du fioul au coût élevé, à 225 €/MWh en moyenne en 2013 selon l'ADEME)[50] ;
  • l'hydrogène peut alimenter certaines flottes de véhicules professionnels, sans nécessiter de réseau coûteux de plusieurs centaines de stations-service sur tout le territoire. Selon l'Ademe, « le modèle économique d’une station pour flotte est accessible pour une consommation journalière supérieure à 80 kg H2/jour, pour une commercialisation de l’hydrogène à moins de 10 €/kg »[50]. Il a dans ce cas les avantages d'un temps de recharge rapide et d'une grande autonomie[46] ;
  • l'hydrogène peut être utilisé dans la sidérurgie en remplacement du charbon ou du gaz naturel pour la réduction du minerai de fer. Recourir à ce procédé en France consommerait 700 000 tonnes d’hydrogène, mais éviterait l’émission[Comment ?] de 22 MtCO2/an, soit près de 5 % des émissions du pays, indique l’Association française pour l'hydrogène et les piles à combustible (Afhypac)[46].

En EuropeModifier

Le , la Commission européenne présente un programme pour le développement de l'hydrogène vert, fixant l'objectif que l'hydrogène couvre 12 à 14 % des besoins en énergie d'ici 2050 afin de décarboner certains secteurs de l'industrie et des transports. Elle compte sur l'hydrogène pour contribuer à la transition énergétique et à la réduction des émissions de gaz à effet de serre. En parallèle, le commissaire européen au commerce intérieur, Thierry Breton annonce la création de l'alliance de l'hydrogène[52].

En FranceModifier

L'ADEME envisage un mix électrique à 40 % composé de "renouvelables" en 2035, puis à 60 % et 70 % en 2050 (contre près de 18 % en 2017, alors en majorité de source hydroélectrique)[50].

La filière cherche à industrialiser ses processus pour diminuer ses coûts (notamment celui de la pile à combustible). Le développement d'une « mobilité hydrogène » est également freiné par un nombre encore très faible de stations de recharge (et de leur capacité encore faible : 10 à 80 kg H2/j à 350 bar). L'hydrogène peut améliorer la puissance du véhicule, prolonger son autonomie et améliorer la rapidité de recharge, par rapport aux batteries[51],[53].

L'Ademe juge que l'hydrogène aura un rôle important dans la transition énergétique, comme vecteur d'optimisation des réseaux énergétiques, pour stocker l'énergie dans l'autoconsommation solaire ou photovoltaïque, et pour certains véhicules professionnels, à condition de décarboner sa production grâce à une électrolyse utilisant une électricité verte et à la transformation de la biomasse (vaporeformage de biogaz, pyrogazéification de biomasse solide). Le bilan environnemental de la filière dépendra surtout de « la source primaire utilisée pour fabriquer l'hydrogène ». L'agence invite à limiter à moins de cent kilomètres la distance de transport de l'hydrogène entre le point de fabrication et la station de distribution. Les véhicules à batterie restent à privilégier, lorsque c'est possible (autonomie, disponibilité, etc.), compte tenu du meilleur rendement de ce type de stockage, et les économies d'énergie restent une priorité[50]. L'une des pistes de développement (en cours de test en 2018/2019) est l'injection dans le réseau de gaz, en France via deux démonstrateurs : GRHYD et Jupiter 1000, pour lever les verrous techniques qui subsistent encore[51].

En , le gouvernement français mandate l'Ademe pour lancer le « plan national de déploiement de l’hydrogène » (ou « plan hydrogène »), afin de donner une impulsion à ce secteur dont le « fort potentiel » est perçu par les acteurs publics. L'objectif du gouvernement est « de créer une filière industrielle française décarbonée, d'ouvrir de nouvelles perspectives au stockage des énergies renouvelables et de développer des solutions zéro émission pour les transports »[54]. Un an après, l'agence publique a réalisé de multiples appels à projets, dont « Écosystèmes de mobilité hydrogène », qui a permis de sélectionner des projets « sur tous les territoires » et diversifiés, comme « la livraison du dernier kilomètre en milieu urbain, le transport collectif de personnes en bus ou en navette maritime, la location de voitures, la collecte de déchets, les flottes d'entreprises et de collectivités, ou encore l'usage de poids lourds comme véhicules de chantier ».

Le CEA, promet une nouvelle technologie d'électrolyse industrielle, baptisée rSOC avec un seul métal précieux : l'Indium[55] (un métal utilisé dans les écrans LCD), avec de moindres températures (de 700 °C à 800 °C) et une moindre consommation électrique. Elle est également réversible, permettant de produire de l'hydrogène ou de restituer de l'énergie électrique telle une pile à combustible[56].

Fin 2019, Air Liquide et Engie s'associent à Durance-Luberon-Verdon Agglomération (DLVA) pour produire, stocker et distribuer de "l'hydrogène vert" (dans le cadre du projet "HyGreen Provence" lancé en 2017, visant 1 300 GWh d'électricité solaire et plusieurs milliers de tonnes:an d'hydrogène produit par électrolyse. Plusieurs dizaines de milliers de tonnes d'hydrogène renouvelable par an pourraient être produites à terme, stockable dans une cavité saline locale[57].

La société française McPhy, qui a déjà installé 17 MW de capacité de production d'hydrogène par électrolyse sous pression, dont 6 MW chez Audi en Allemagne, annonce en janvier 2020 la signature du contrat d'ingénierie d'un projet de production d'hydrogène vert industriel de 20 MW, le plus gros projet à ce jour en Europe, implanté à Delfzijl aux Pays-Bas d'ici 2022. L'usine produira 3 000 tonnes d'hydrogène par an par électrolyse de l'eau au moyen d'électricité éolienne et servira à la fabrication de bioéthanol. Le projet bénéficie de 15 millions d'euros de subventions de l'Union européenne et d'un fonds néerlandais. Selon McPhy, la bonne échelle sera de 100 ou 200 MW pour atteindre un prix compétitif dans l'industrie[58].

La loi Énergie Climat de novembre 2019 donne un an au gouvernement pour mettre en place un mécanisme de soutien destiné à « l’hydrogène produit à partir d’énergie renouvelable ou par électrolyse de l’eau à l’aide d’électricité bas-carbone ». Avant 2023, la programmation pluriannuelle de l'énergie vise l’objectif de décarboner 10 % de l'hydrogène consommé dans l’industrie, ce qui exige la production de 90 000 tonnes d'hydrogène vert. Le gouvernement lance en janvier 2020 un appel à manifestation d’intérêt, destiné à tester l'appétence des industriels pour le sujet, qui reçoit plus de 160 projets. Par exemple, H2V Industry dépose en janvier les demandes de permis de construire pour deux usines de production d’hydrogène dans la zone industrielle de Port-Jérôme, en Normandie, et sur le grand port maritime de Dunkerque à partir d'électricité renouvelable ; si elles parviennent à bénéficier d’un mécanisme de soutien, leur mise en service pourrait intervenir en 2023-2024 et elles produiraient 56 000 tonnes d’hydrogène. Les grands acteurs industriels français (Engie, EDF, Air Liquide, Vinci, etc.) se sont également positionnés[46].

Le gouvernement Castex annonce en septembre 2020 un plan beaucoup plus ambitieux que celui présenté par Nicolas Hulot en 2018, doté de 100 millions € : le plan 2020 prévoit de consacrer 7,2 milliards € d'ici 2030 à l'hydrogène vert ou bas carbone, dont 2 milliards € en 2021 et 2022 dans le cadre du plan de relance. Le gouvernement prévoit de subventionner la production d'hydrogène vert par le biais d'appels d'offres, sur le modèle des renouvelables, et la construction d'usines de piles à combustibles pour les véhicules à hydrogène. Des partenariats avec l'Allemagne, qui a dévoilé un plan hydrogène à 9 milliards € en juin, sont envisagés afin d'éviter les doublons[59].

Ce plan hydrogène comprend un premier volet de 1,5 milliards € consacré à la fabrication d'électrolyseurs, afin d'en réduire le coût en l'améliorant et en augmentant les volumes, pour une capacité de 6,5 GW. Le deuxième volet de près d'un milliard d'euros sera utilisé d'ici à 2023 pour développer une offre de mobilité lourde à l'hydrogène en réduisant le coût et en améliorant le rendement des piles à combustibles destinées aux trains, camions, bus et avions, via plusieurs appels à projet (350 millions d'euros pour des démonstrateurs, 275 millions pour des expériences territoriales, etc). Enfin, l'aide à la recherche et l'innovation sera stimulée, avec une enveloppe portée à 650 millions d'ici à 2023. Bruno Le Maire espère que ce plan créera entre 50 000 et 150 000 emplois directs et indirects[60]. Le gouvernement envisage une coopération avec l'Allemagne qualifiée d'« Airbus de l'électrolyse » à l'image de l'« Airbus des batteries ». La France s'est fixé l'objectif de produire 600 000 tonnes par an d'hydrogène vert, à partir d'électricité décarbonée, d'origine renouvelable ou nucléaire. Contrairement à l'Allemagne, Paris ne subventionnera pas, en revanche, la capture du carbone issu de l'hydrogène « gris ». Bruno Le Maire espère voir « émerger une filière française de l'électrolyse » : à côté des géants comme Air Liquide, les start-up sont aussi nombreuses, comme Lhyfe, basée à Nantes, qui développe des sites de production d'hydrogène vert pour des industriels et des collectivités locales, ou encore McPhy, producteur drômois d'électrolyseurs dont EDF est actionnaire[61].

En BelgiqueModifier

Une équipe de la KUL conçoit un prototype de cellule photoélectrochimique de 1,6 m2 produisant en moyenne 250 litres de dihydrogène par jour à partir de la vapeur d'eau atmosphérique. Le dispositif convertit 15 % de l'énergie solaire en dihydrogène et en dioxygène. Et cette technologie ne fait pas appel à des métaux précieux ou autres matériaux coûteux. Avec vingt panneaux, une maison bien isolée serait autonome en électricité et en chauffage pendant un an[62],[63].

Colruyt Group (acteur belge important de la distribution) veut décarboner ses activités autant que possible. Un de ses centres logistiques est en 2018 équipé de 75 élévateurs alimentés à l'hydrogène « décarboné » et sa flotte de camion doit être convertie d'ici 2030. Avec un acteur gazier, se prépare un projet d'installation de 12 à 25 MW (extensible) de convertion en hydrogène dl'électricité issue de l'éolien en mer, à échelle industrielle.[64],[65],[66].

Au JaponModifier

Fin 2017, le Japon, gros importateur d'énergie, confirme vouloir devenir chef de file en tant que « société hydrogène » avec un objectif de « parité coût » avec l’essence et le GNL pour la production électrique. Comme pour le nucléaire autrefois, l'hydrogène est présenté comme un moyen majeur de décarboner l'énergie, mais les projets pilotes donneront leurs conclusions vers 2020[67],[68]. En 2018, le Japon est en tête pour la mobilité hydrogène, avec près de 2 500 voitures à pile à hydrogène en circulation et plus de cent stations hydrogène (contre 45 en Allemagne, 42 aux États-Unis[69] et une vingtaine en France au même moment)[67],[70]. Le pays vise à diviser par plus de trois le coût de production avant 2030, puis de 80 % avant 2050. Entre 2013 et 2017, l'État japonais a déjà investi 1,5 milliard de dollars dans la R&D et le développement de l’hydrogène[67].

En CalifornieModifier

En , la Californie compte 7 570 voitures à hydrogène immatriculées[71] et les 42 stations publiques américaines[69].

En AllemagneModifier

Le gouvernement allemand adopte un plan ambitieux de développement de l'hydrogène « vert », doté de 9 milliards d'euros[72].

Moteur à hydrogèneModifier

Fusion nucléaire : bombe H et réacteurs à fusionModifier

Dangers, risques et précautionsModifier

Le dihydrogène est un gaz classé « extrêmement inflammable ». Il est caractérisé par un domaine d’inflammabilité très large (de 4 à 75 % du volume dans l’air), provoquant une déflagration à partir d’un apport d’énergie d’activation très faible (une étincelle suffit si elle apporte une énergie de 0,02 millijoule (mJ) alors qu’il faut 0,29 mJ pour déclencher une explosion du méthane).

L'hydrogène mélangé à de l'oxygène dans les proportions stœchiométriques est un explosif puissant. Le dihydrogène dans l'air est un mélange détonnant lorsque le rapport volumique H2 / air est compris entre 13 et 65 %.

L'histoire de son utilisation dans les ballons dirigeables est parsemée d'accidents graves, dont le plus célèbre est la catastrophe du Hindenburg. Le zeppelin LS 129, gonflé de 200 000 mètres cubes de dihydrogène (car les États-Unis avaient déclaré envers l'Allemagne un embargo pour l'hélium) brûla le à son arrivée à l'aérodrome de Lakehurst (New Jersey), près de New York). 36 personnes moururent sur le total de 97 embarquées. Les médias présents divulguèrent largement les images de la catastrophe, ce qui conduisit à la désaffection du public pour les ballons. Les enquêtes sur l'origine de l'accident, facilitées par l'abondance de documents photographiques, n'incriminèrent pourtant pas une explosion du dihydrogène, mais une inflammation par contiguïté, à partir d'un incendie de l'enveloppe (causé probablement par une décharge d'électricité statique). La composition du revêtement étanche de l'enveloppe (butyrates et aluminium) aurait favorisé une violente réaction aluminothermique. L'accident aurait toutefois été beaucoup moins violent si le ballon avait été gonflé à l'hélium[38].

Le remplacement du dihydrogène par l'hélium (beaucoup plus coûteux et plus dense) ne produisit pas le regain de faveur attendu. La peur de l'hydrogène resta ; le « syndrome Hindenburg » a probablement injustement pénalisé la filière[38].

Le dihydrogène réagit encore plus violemment avec le dichlore pour former de l'acide chlorhydrique (HCl), même sans activation, et avec le difluor pour former de l'acide fluorhydrique (HF), et ceci même aux températures où l'hydrogène est liquide et le fluor solide, cette dernière réaction étant la réaction chimique la plus exothermique qui soit.

Stockage fixe ou mobileModifier

L’industrie stocke le dihydrogène à l’extérieur des bâtiments, ce qui ne sera pas possible pour une utilisation embarquée (véhicules, navires). Les normes de sécurité sont renforcées pour répondre aux risques posés par le passage dans les tunnels et le stationnement dans les garages ou parkings souterrains.

La réglementation mondiale sur les véhicules s’élabore sous l’égide de l'ONU à partir des propositions des industriels, mais en ce qui concerne le dihydrogène, les constructeurs japonais, Américains et Européens ne s’accordent pas. La Commission européenne pourrait décider d’une réglementation communautaire provisoire.

En France, l’INERIS et le CEA travaillent avec l’Organisation internationale de normalisation (ISO) dans un comité technique nommé TC 197 sur le risque dihydrogène. Un projet européen Hysafe traite aussi de la question, où l’INERIS a critiqué le projet de règlement en suggérant une approche plus globale et systémique et non par composant pour l’homologation des véhicules hybrides. En 2015, Le MEDDE a préparé une mise à jour des règlements pour les stations-service et les flottes de véhicules fonctionnant à l'hydrogène[73].

Risque pour la couche d'ozoneModifier

Une libération massive du gaz hydrogène a fait évoquer l'hypothèse d'un risque majeur pour la couche d'ozone[74],[75].

Mesures de sûretéModifier

Les points suivants sont à retenir :

  • l'hydrogène n'est pas intrinsèquement toxique ;
  • il est huit fois plus léger que le méthane. Sa molécule, très petite, lui confère un très bon coefficient de diffusion dans l'air (quatre fois supérieur à celui du méthane) ; en milieu non confiné, l'hydrogène tend donc à monter, et à vite se diluer dans l'air (c'est un facteur de sécurité en plein air, et un facteur de dangerosité dans les lieux confinés) ;
  • c'est l'espèce chimique la plus énergétique par unité de masse (120 kJ/g) ; mais par unité de volume de gaz, l'énergie explosive théorique est 3,5 fois plus faible pour l'hydrogène que pour le gaz naturel ;
  • sa limite inférieure d'inflammation est de 4 % en volume, comparable à celle du gaz naturel (5 % en volume) ; mais sa limite supérieure d'inflammation est nettement plus élevée (75 % contre 15 %) ; cela signifie qu'en cas de fuite, l'hydrogène s'enflammera beaucoup plus facilement que le gaz naturel ou les combustibles liquides ;
  • l'énergie nécessaire pour l'enflammer à la stœchiométrie est également nettement plus faible (environ 10 fois) que le gaz naturel ou le propane ;
  • la flamme d'hydrogène, bleu pâle, est presque invisible le jour (risque pour les secours) ;
  • la flamme d'hydrogène se propage environ sept fois plus vite que celle du gaz naturel et le risque de détonation (explosion avec effet de souffle très important) est aggravé par son haut coefficient de diffusivité.

L'inflammabilité peut en outre être réduite en diluant le dihydrogène dans de l'hélium, même à très haute température[76],[77].

Référence ONU pour le transport de matières dangereusesModifier

  • Nom (français) : Hydrogène comprimé
    • Classe : 2
    • numéro : 1049
  • Nom (français) : Hydrogène liquide réfrigéré
    • Classe : 2
    • numéro : 1966
  • Nom (français) : Hydrogène dans un dispositif de stockage à hydrure métallique
    • Classe : 2
    • numéro : 3468

Notes et référencesModifier

  1. a b c et d HYDROGENE, fiche(s) de sécurité du Programme International sur la Sécurité des Substances Chimiques, consultée(s) le 9 mai 2009
  2. Masse molaire calculée d’après « Atomic weights of the elements 2007 », sur www.chem.qmul.ac.uk.
  3. a b c et d (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc, , 90e éd., 2804 p., Relié (ISBN 978-1-4200-9084-0).
  4. a et b Jean-Louis Vignes (dir. et Membre de la Société Chimique de France) et al., « Dihydrogène : Données Physico-Chimiques », Site de promotion et de pédagogie relatif aux éléments chimiques (du tableau périodique de Dmitri Mendeleïev), sur lelementarium.fr, Paris & Puteaux, Société chimique de France & France Chimie (consulté le 3 novembre 2019).
  5. Pierre Ravarini (ingénieur chimiste & hydrologue), « Gaz-Hydrogène », site d'informations scientifiques, techniques et écologiques sur l'eau, Côte de Nacre (Calvados), (consulté le 3 novembre 2019).
  6. (en) James E. Mark, Physical Properties of Polymer Handbook, Springer, , 2e éd., 1076 p. (ISBN 978-0-387-69002-5 et 0-387-69002-6, lire en ligne), p. 294
  7. a et b (en) Robert H. Perry et Donald W. Green, Perry's Chemical Engineers' Handbook, USA, McGraw-Hill, , 7e éd., 2400 p. (ISBN 0-07-049841-5), p. 2-50
  8. « Properties of Various Gases », sur flexwareinc.com (consulté le 12 avril 2010)
  9. Procès-verbaux du Comité international des poids et mesures, 78e session, 1989, pp. T1-T21 (et p. T23-T42, version anglaise).
  10. (en) W. M Haynes, Handbook of chemistry and physics, CRC, 2010-2011, 91e éd., 2610 p. (ISBN 978-1-4398-2077-3), p. 14-40.
  11. (en) David R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton, CRC Press, , 83e éd., 2664 p. (ISBN 0849304830, présentation en ligne), p. 5-89
  12. Magalie Roy-Auberger, Pierre Marion, Nicolas Boudet, Gazéification du charbon, éd. Techniques de l'Ingénieur, Référence J5200, 10 décembre 2009, p. 4
  13. « Office of Radiation, Chemical & Biological Safety (ORCBS) » (consulté le 16 avril 2009)
  14. Règlement CE no 1272/2008, 16 décembre 2008 [PDF], sur EUR-Lex, p. 923 : Annexe VI, tableau 3.1, numéro index 001-001-00-9.
  15. « Hydrogène » dans la base de données de produits chimiques Reptox de la CSST (organisme québécois responsable de la sécurité et de la santé au travail), consulté le 23 avril 2009
  16. « hydrogene », sur ESIS, consulté le 15 février 2009
  17. « La découverte de sources d’hydrogène ouvre la voie à une nouvelle énergie », Le Monde.
  18. « L’hydrogène naturel, un eldorado énergétique ? », Sciences et Avenir.
  19. Expériences de lavoisier, sur lavoisier.cnrs.fr
  20. « Détecter les émanations naturelles d’hydrogène grâce aux images satellites - Lancement du projet sen4H2 », sur IFP Énergies nouvelles (consulté le 6 avril 2019).
  21. « Ressources minérales grand fond », sur Ifremer (consulté le 28 octobre 2019).
    L'article présente une carte des fonds marins donnant la distribution connue en serpentine le long des dorsales.
  22. a et b Sylvestre Huet, « L'hydrogène natif, une nouvelle source d'énergie ? », sur sciences.blogs.liberation.fr, Libération, (consulté le 28 octobre 2019).
  23. « Réaction eau de mer-manteau : formation de la serpentine », sur Ifremer (consulté le 28 octobre 2019).
  24. « Synthèse d'hydrogène, de méthane et d’hydrocarbures dans les grands fonds, vers de nouvelles ressources énergétiques… », sur Ifremer (consulté le 28 octobre 2019).
  25. a b et c « De l'hydrogène, oui, mais de l'hydrogène naturel », sur La Tribune, (consulté le 3 octobre 2020).
  26. L'hydrogène naturel : une contribution au mix énergétique ?, IFP Énergies nouvelles, 11 avril 2013.
  27. Julia Guélard, Caractérisation des émanations de dihydrogène naturel en contexte intracratonique : exemple d'une interaction gaz/eau/roche au Kansas (thèse de doctorat en géochimie), Université Pierre-et-Marie-Curie et IFP Énergies nouvelles, (présentation en ligne, lire en ligne).
  28. (en) J. Guélard, V. Beaumont, V. Rouchon et F. Guyot, « Natural H2 in Kansas: Deep or shallow origin? », Geochemistry, Geophysics, Geosystems, vol. 18, no 5,‎ , p. 1841–1865 (ISSN 1525-2027, DOI 10.1002/2016GC006544, résumé, lire en ligne, consulté le 28 octobre 2019).
  29. a b et c Alain Prinzhofer, Eric Deville, Hydrogène naturel - La prochaine révolution énergétique ?, Ed. Belin, 2015 (ISBN 978-27011-83848).
  30. J. Guélard et al., « Natural H 2 in Kansas: Deep or shallow origin? », Geochemistry Geophysics Geosystems,‎ (DOI 10.1002/2016GC006544, présentation en ligne, lire en ligne [PDF], consulté le 25 octobre 2109).
  31. (en) H. Hosgormez, G. Etiope et M. N. Yalçin, « New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas », Geofluids, vol. 8, no 4,‎ , p. 263–273 (DOI 10.1111/j.1468-8123.2008.00226.x, lire en ligne).

    « {{{1}}} »

  32. « Bourakébougou : la promesse d'une centrale électrique à hydrogène », (consulté le 28 octobre 2019).
  33. (en) « Volcanic gases : hydrogen burning at Kilauea volcano, Hawaii», sur mendeley.com.
  34. (en) Deep Hydrogen, sur astrobio.net.
  35. (en) G.J. MacDonald (1988). « Major Questions About Deep Continental Structures » Deep drilling in crystalline bedrock, v. 1: 28-48 p., Berlin: Springer-Verlag. .
  36. « L'hydrogène naturel une source beaucoup plus importante qu'on ne le pensait selon le CNRS », sur http://erh2-bretagne.mystrikingly.com, (consulté le 12 novembre 2019).
  37. « Le 15 avril 1988, le Tu-155 vole à l’hydrogène », sur Aerobuzz, (consulté le 12 novembre 2020)
  38. a b et c L'hydrogène, les nouvelles technologies de l'énergie. Les clefs CEA, no 50/51, Hiver 2004-2005, (ISSN 0298-6248)
  39. Rapport du projet européen StorHy, p. 8, hydrogen loss rate
  40. Article de la Tribune L'Europe finance une batterie géante pour stocker l'énergie renouvelable
  41. (en) T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree et M. Salmeron, « Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies », Nature, vol. 422,‎ , p. 705-707 (DOI 10.1038/nature01557, lire en ligne [PDF]).
  42. a et b (en) The Future of Hydrogen - Seizing today’s opportunities, Agence internationale de l'énergie, juin 2019 [PDF].
  43. (en) Gas Decarbonisation Pathways 2020–2050, Gas for climate, , 226 p. (lire en ligne [PDF]), p. 17.
  44. « Plan de relance: quelle place pour l’énergie? », sur connaissancedesenergies.org, .
  45. « L’hydrogène naturel: curiosité géologique ou source d’énergie majeure dans le futur? », sur connaissancedesenergies.org, .
  46. a b c et d « L'hydrogène vert, chaînon manquant de la transition », Alternatives économiques (consulté le 8 août 2020).
  47. « L'Ademe liste les « contributions majeures » de l'hydrogène à la transition énergétique », Connaissance des énergies, 4 avril 2018.
  48. Interactions (lettre aux actionnaires d'Air liquide), Air liquide, septembre 2015 [PDF], p. 5.
  49. (en) Liz Gyekye, [ https://biomarketinsights.com/australia-backs-tech-that-converts-biogas-into-hydrogen-and-graphite/ « Australia backs tech that converts biogas into hydrogen and graphite »], Biomarketing sights, 4 sept 2019.
  50. a b c d e et f Le vecteur hydrogène dans la transition énergétique, Avis de l'ADEME, avril 2018 [PDF].
  51. a b et c Séverine Fontaine, « L’Ademe veut de l’hydrogène à partir d’énergies renouvelable », L’Automobile & L’Entreprise, no 5,‎ (lire en ligne).
  52. « La Commission Européenne dévoile son plan de développement de l'hydrogène vert », sur L'EnerGeek, (consulté le 11 juillet 2020).
  53. L’hydrogène dans la transition énergétique, Ademe, février 2016, 7 pages [PDF].
  54. Joseph Martin, « Développement de l’hydrogène, l’ADEME dresse le bilan », sur RSE Magazine (consulté le 17 mai 2019).
  55. « Des chercheurs grenoblois optimisent la photosynthèse artificielle pour produire de l’hydrogène », sur placegrenet.fr, (consulté le 30 mars 2019).
  56. Véronique Pouzard, « L'électrolyse à haute température du CEA portée par la start-up Sylfen », Les Échos, (consulté le 30 mars 2019).
  57. AFP (2019)Hydrogène « vert » : coopération entre Air Liquide, Engie et l'agglomération Durance, Lubéron, Verdon ; 13 nov. 2019
  58. McPhy au centre de la plus grande unité de production d'hydrogène zéro-carbone en Europe, Les Échos, 22 janvier 2020.
  59. Plan de relance : la France change d'échelle dans l'hydrogène, Les Échos, 3 septembre 2020.
  60. Hydrogène : la France détaille son plan à 7 milliards d'euros, Les Échos, 8 septembre 2020.
  61. Hydrogène : le gouvernement veut créer un « Airbus de l'électrolyse », Les Échos, 8 septembre 2020.
  62. (en) « KU Leuven scientists crack the code for affordable, eco-friendly hydrogen gas », sur KU Leuven (consulté le 31 octobre 2019).
  63. « Des chercheurs belges développent un panneau solaire qui produit de l'hydrogène », sur RTBF Info, (consulté le 31 octobre 2019).
  64. « Groupe Colruyt: le pari de la mobilité à l'hydrogène », sur RTBF Info, (consulté le 31 octobre 2019).
  65. « Colruyt et Fluxys veulent construire une usine d’hydrogène, une première en Belgique », Le Soir, (consulté le 31 octobre 2019).
  66. « Conduire à l’hydrogène : notre expérience », Le Moniteur automobile (consulté le 31 octobre 2019).
  67. a b et c (en) Monica Nagashima (Institute of Energy Economics, Japon), Japan's hydrogen strategy and its economic and geopolitical implications, Institut français des relations internationales, octobre 2018 [PDF].
  68. « La « stratégie hydrogène » du Japon », Connaissance des énergies, 9 octobre 2018.
  69. a et b (en) « Alternative Fuels Data Center: Hydrogen Fueling Station Locations », sur Alternative Fuels Data Center, Département de l'Énergie des États-Unis (consulté le 31 octobre 2019).
  70. Benoît Le Floc'h, « Quid de l’hydrogène pour les véhicules utilitaires légers ? », sur Caradisiac, (consulté le 30 mars 2019).
  71. « La Californie passe le cap des 7500 voitures hydrogène en circulation », sur www.h2-mobile.fr (consulté le 31 octobre 2019).
  72. (en) « German government adopts hydrogen strategy » [« Le gouvernement allemand adopte une stratégie sur l'hydrogène »], sur Gouvernement fédéral (Allemagne), .
  73. Radisson, Laurent (2015) Risques hydrogène : le ministère de l'Ecologie travaille sur de nouveaux textes ;  ; Actu env, publié 21 octobre 2015
  74. T. Rahn, J. M. Eiler, K. A. Boering, P. O. Wennberg, M. C. McCarthy, S. Tyler, S. Schauffler, S. Donelly, E. Atlas, Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H2, Nature 424, 918-921, 2003.
  75. Tromp, T. K., R-L Shia, M. Allen, J. M. Eiler et Y. L. Yung, Potential environmental impact of a hydrogen economy on the stratosphere, Science 300, 1740-1742, 2003.
  76. Céline Duguey, « Une expérience explosive », sur Espace des sciences, (consulté le 16 avril 2020).
  77. (en) Florent Tonus, Mona Bahout, Paul F. Henry et Siân E. Dutton, « Use of in situneutron diffraction to monitor high-temperature, solid/H2-gas reactions », Chemical Communications, no 18,‎ , p. 2556–2558 (ISSN 1364-548X, PMID 19532888, DOI 10.1039/B822419F, lire en ligne, consulté le 16 avril 2020).

Voir aussiModifier

Sur les autres projets Wikimedia :

BibliographieModifier

  • Yver, Camille, Quantifier l'utilisation du dihydrogène par les sols : de l'échelle locale à l'échelle globale, 2011 DOI : 10.4267/2042/47372 (résumé — Prix Prud'homme 2011.
  • Stephen Boucher, La Révolution de l'hydrogène. Vers une énergie propre et performante ?, préface de Thierry Alleau, Paris, Éd. du Felin, 2006, 160 p., (ISBN 2-86645-616-5).
  • Alain Prinzhofer, Eric Deville, Hydrogène naturel - La prochaine révolution énergétique ?, Belin, 2015 (ISBN 978-27011-83848)

Articles connexesModifier

Liens externesModifier