Grandeur résiduelle

En thermodynamique, une grandeur résiduelle exprime l'écart entre une grandeur thermodynamique extensive d'un mélange réel (gaz, liquide ou solide) et la même grandeur thermodynamique extensive d'un mélange de gaz parfaits aux mêmes pression, température et composition.

DéfinitionsModifier

Une grandeur résiduelle   exprime l'écart entre une grandeur thermodynamique extensive   d'un mélange réel (gaz, liquide ou solide) et la même grandeur thermodynamique extensive   d'un mélange de gaz parfaits aux mêmes pression, température et composition :

Grandeur résiduelle :  

Une grandeur résiduelle est par construction également une grandeur extensive, il est donc possible de définir une grandeur résiduelle molaire   pour le mélange et une grandeur résiduelle molaire partielle   pour chacun des corps   présents dans le mélange. Les relations suivantes sont également vraies :

Grandeur résiduelle molaire :  
Grandeur résiduelle molaire partielle :  

avec, toutes ces grandeurs étant définies aux mêmes pression, température et composition :

  •   la quantité de matière totale dans le mélange ;
  •   la quantité du corps   dans le mélange ;
  •   la grandeur molaire du mélange réel ;
  •   la grandeur molaire partielle du corps   dans le mélange réel ;
  •   la grandeur résiduelle molaire du mélange ;
  •   la grandeur résiduelle molaire partielle du corps   ;
  •   la grandeur molaire du mélange de gaz parfaits ;
  •   la grandeur molaire partielle du corps   dans le mélange de gaz parfaits.

Calcul des grandeurs résiduellesModifier

À partir des coefficients de fugacitéModifier

Pour l'enthalpie libre  , l'identité des potentiels chimiques   et des enthalpies libres molaires partielles   permet d'écrire, pour tout corps   dans un mélange quelconque :

 

avec, toutes ces grandeurs étant définies aux mêmes pression, température et composition :

  •  , enthalpie libre molaire partielle du corps   dans le mélange réel ;
  •  , enthalpie libre molaire partielle du corps   dans le mélange de gaz parfaits correspondant au mélange réel ;
  •  , potentiel chimique du corps   dans le mélange réel ;
  •  , potentiel chimique du corps   dans le mélange de gaz parfaits correspondant au mélange réel ;
  •  , coefficient de fugacité du corps   ;
  •  , constante universelle des gaz parfaits ;
  •  , température.

Le terme du coefficient de fugacité est donc l'enthalpie libre résiduelle molaire partielle, ou potentiel chimique résiduel :

Enthalpie libre résiduelle molaire partielle :  

À partir de l'enthalpie libre résiduelle, toutes les autres grandeurs résiduelles peuvent être calculées :

  •  , entropie résiduelle molaire partielle, calculée par l'une des équations d'état ;
  •  , enthalpie résiduelle molaire partielle ;
  •  , volume résiduel molaire partiel, calculé par l'une des équations d'état ;
  •  , énergie interne résiduelle molaire partielle ;
  •  , énergie libre résiduelle molaire partielle.

Le théorème d'Euler sur les fonctions homogènes du premier ordre s'applique aux grandeurs résiduelles puisque ce sont des grandeurs extensives, avec   nombre de moles et   fraction molaire de chacun des   corps   présents dans le mélange :

Grandeur résiduelle :  
Grandeur résiduelle molaire :  

avec :

  •  , quantité de matière totale dans le mélange ;
  •  , quantité du corps   dans le mélange ;
  •  , fraction molaire du corps   dans le mélange.

On a donc en particulier pour l'enthalpie libre :

Enthalpie libre résiduelle :  
Enthalpie libre résiduelle molaire :  

Avec une équation d'état explicite en pressionModifier

Avec une équation d'état dans laquelle la pression   est exprimée explicitement en fonction du volume  , de la température   et de la composition (nombre de moles   de chacun des constituants du mélange),  , telle que les équations d'état cubiques de van der Waals, Soave-Redlich-Kwong, Peng-Robinson, les grandeurs résiduelles molaires se calculent selon :

 
 
 
 
 
 
 
 
 
 
 
 

avec :

  •  , quantité de matière totale dans le mélange ;
  •  , volume molaire du mélange réel ;
  •  , volume molaire du mélange de gaz parfaits aux mêmes pression, température et composition que le mélange réel,   ;
  •  , facteur de compressibilité du mélange réel.

On vérifie que pour un gaz parfait, le facteur de compressibilité étant constant  , toutes les grandeurs résiduelles sont nulles.

Avec une équation d'état explicite en volumeModifier

Avec une équation d'état dans laquelle le volume   est exprimé explicitement en fonction de la pression  , de la température   et de la composition (nombre de moles   de chacun des constituants du mélange),  , comme l'une des formes de l'équation du viriel, les grandeurs résiduelles molaires se calculent selon :

 
 
 
 
 
 
 
 
 
 
 
 

avec :

  •  , quantité de matière totale dans le mélange ;
  •  , volume molaire du mélange réel ;
  •  , volume molaire du mélange de gaz parfaits aux mêmes pression, température et composition que le mélange réel,   ;
  •  , facteur de compressibilité du mélange réel.

On vérifie que pour un gaz parfait, le facteur de compressibilité étant constant  , toutes les grandeurs résiduelles sont nulles.

Calcul des grandeurs extensives réellesModifier

Les grandeurs extensives   du mélange de gaz parfaits peuvent être calculées facilement à l'aide des propriétés des corps purs à l'état de gaz parfait puisque selon le théorème de Gibbs le mélange de gaz parfaits est une solution idéale.

Les grandeurs extensives du mélange réel se calculent donc en appliquant la définition des grandeurs résiduelles :

Propriétés d'un mélange réel :  

Rappelons que ceci est valable pour toutes les phases (gaz, liquide ou solide) pour peu que l'on dispose d'une équation d'état permettant de calculer les grandeurs résiduelles de cette phase, donc les écarts de cette phase au mélange de gaz parfaits correspondant. Dans la pratique, ceci est surtout appliqué au calcul des propriétés des gaz ; pour les phases condensées, liquide ou solide, une autre approche est préférée : la solution idéale choisie est le mélange des corps purs dans la même phase et aux mêmes pression et température que le mélange réel, les propriétés sont calculées à l'aide d'un modèle de coefficients d'activité et de grandeurs d'excès.

Voir aussiModifier

Liens connexesModifier

BibliographieModifier

  • Jean-Pierre Corriou, « Thermodynamique chimique - Diagrammes thermodynamiques », Techniques de l'ingénieur, base documentaire : Thermodynamique et cinétique chimique, pack : Opérations unitaires. Génie de la réaction chimique, univers : Procédés chimie - bio - agro, J 1026, pp. 1-30, 1985.
  • Robert C. Reid, John M. Prausnitz et Bruce E. Poling, « The properties of gases and liquids », Mc Graw Hill, 4e éd., 1987 (ISBN 978-0070517998).
  • Jean Vidal, Thermodynamique : application au génie chimique et à l'industrie pétrolière, Paris, Éditions Technip, coll. « Publications de l'Institut français du pétrole. », , 500 p. (ISBN 978-2-710-80715-5, OCLC 300489419, lire en ligne).