Solution idéale

En chimie physique, une solution est dite solution idéale si les interactions entre les molécules qui composent cette solution, toutes espèces confondues, sont toutes identiques. Autrement dit, les molécules des différentes espèces s'attirent ou se repoussent entre elles de la même façon que les molécules de chaque espèce à l'état pur s'attirent ou se repoussent entre elles. Les solutions idéales peuvent être définies pour n'importe quelle phase (gaz, liquide ou solide).

Évolution de la fugacité en fonction de la fraction molaire à pression et température constantes[1],[2].
Dans une solution idéale les fugacités des divers corps, à pression et température données, varient linéairement par rapport à leur fraction molaire, par exemple selon la loi de Lewis et Randall ou selon la loi de Henry.

Une solution idéale est formellement définie en thermodynamique par la loi de Lewis et Randall.

Les grandeurs extensives d'une solution idéale ou réelle sont calculées à partir des grandeurs extensives des corps la constituant pris à l'état pur et de grandeurs de mélange qui traduisent la création d'entropie lors d'une opération de mélange.

DéfinitionModifier

Exemples de solutions idéalesModifier

Le mélange de gaz parfaits, tel que défini par le théorème de Gibbs, est le modèle de référence de la solution idéale. Ceci est inclus dans la définition même des gaz parfaits : en effet, dans un gaz parfait les interactions entre molécules sont toutes identiques, puisqu'elles sont nulles. Ainsi, dans un mélange d'espèces chimiques différentes à l'état de gaz parfaits toutes les interactions entre les diverses espèces sont nulles. Les mélanges gazeux réels qui se comportent à basse pression comme des gaz parfaits constituent donc des solutions idéales, par exemple l'air à la pression atmosphérique. Le modèle de la solution idéale permet d'étendre les propriétés du mélange de gaz parfaits à tout autre état de la matière (liquide et solide notamment), y compris ceux dans lesquels les interactions entre molécules ne sont pas nulles[3].

Les mélanges liquides réels de molécules de structures et de tailles similaires ont un comportement proche de la solution idéale[3] :

Le comportement d'une solution liquide dans laquelle le soluté est très dilué est proche de celui d'une solution idéale. Les propriétés colligatives de cette solution peuvent alors être déterminées par plusieurs lois démontrées à l'aide de l'hypothèse de la solution idéale :

Si une solution liquide idéale est en équilibre avec sa vapeur idéale, alors l'équilibre liquide-vapeur suit la loi de Raoult ou la loi de Henry. La vapeur (gaz en équilibre avec le liquide) est un mélange de gaz parfaits. Au contraire, si l'on mélange 1 litre d'eau avec 1 litre d'éthanol, on obtient un volume total d'environ 1,92 litre[4]. Le volume idéal   étant de 2 litres, il y a donc contraction du mélange : les molécules d'eau et d'éthanol s'attirent plus fortement que les molécules de ces liquides purs. Le mélange eau-éthanol n'est donc pas une solution idéale, il présente d'ailleurs un azéotrope que la loi de Raoult est incapable de représenter (néanmoins tous les mélanges non idéaux ne présentent pas nécessairement d'azéotrope).

Le mélange cuivre-nickel (Cu-Ni) peut être considéré comme un mélange idéal, tant en phase liquide qu'en phase solide. Un équilibre liquide-solide idéal suit l'équation de Schröder-van Laar généralisée aux solutions idéales (équivalent pour les équilibres liquide-solide de la loi de Raoult des équilibres liquide-vapeur). Au contraire, les mélanges iodure de potassium-chlorure de potassium (KI-KCl) et or-cuivre (Au-Cu) présentent un point de fusion congruent (équivalent pour les équilibres liquide-solide de l'azéotrope des équilibres liquide-vapeur) qui prouve leur non idéalité[5] (néanmoins tous les mélanges non idéaux ne présentent pas nécessairement de point de fusion congruent).

Loi de Lewis et RandallModifier

Du point de vue de la thermodynamique, une solution en phase   (gaz, liquide ou solide), à pression   et température  , est idéale si la fugacité de chacun de ses   constituants   répond à la loi de Lewis et Randall (1923) :

Loi de Lewis et Randall :  

Cette formulation est équivalente à celle donnée par la relation des potentiels chimiques :

 

avec :

  •   la pression totale du mélange ;
  •   la température du mélange ;
  •   la fraction molaire du constituant   ;
  •   la fugacité du composant   dans la solution idéale ;
  •   la fugacité du composant   pur, aux mêmes  ,   et phase   que la solution idéale ;
  •   le potentiel chimique du composant   dans la solution idéale ;
  •   le potentiel chimique du composant   pur, aux mêmes  ,   et phase   que la solution idéale ;
  •   la constante universelle des gaz parfaits.

Exemple - Les gaz parfaits.

La fugacité d'un gaz parfait   pur est la pression :  . La fugacité du même gaz parfait   dans un mélange de gaz parfaits, quelle que soit sa fraction molaire  , est sa pression partielle :  . Un mélange de gaz parfaits est une solution idéale selon la loi de Lewis et Randall.

Cette loi n'est dans les faits vraie, pour les solutions réelles, que pour de fortes concentrations du corps  , proches du corps pur.

Extension de la notion de solution idéaleModifier

La notion de solution idéale peut être étendue en prenant toute autre référence de concentration que le corps pur[3] :

Solution idéale :  

avec :

  •   la fugacité du corps   ;
  •   la fugacité   du corps   à la concentration  , aux pression  , température   et phase   de la solution idéale ;
  •   une concentration fixe du corps  .

Une solution idéale est donc caractérisée, à pression et température données, par une évolution linéaire des fugacités des corps constituant ce mélange en fonction de leurs fractions molaires. La concentration de référence   peut être différente d'un corps à un autre[3].

Cette formulation est équivalente à celle donnée par la relation des potentiels chimiques :

 

avec   le potentiel chimique du corps   à la concentration  , aux mêmes pression, température et phase que la solution idéale.

Pour un corps  , les deux états de référence les plus utilisés sont :

  • l'état de corps pur, avec   et   ;
  • l'état de dilution infinie dans un corps  , avec   et  .

Le premier état donne la loi de Lewis et Randall. Le deuxième état donne, par la règle de L'Hôpital, la loi de Henry :

Constante de Henry :  
Loi de Henry :  

avec   la constante de Henry du corps   infiniment dilué dans le corps  , qui est la pente à dilution infinie de la fugacité   du corps   dans le mélange binaire  .

Grandeurs extensives d'une solution idéaleModifier

On considère une solution idéale constituée de   espèces chimiques différentes sous la pression  , à la température   et dans une phase donnée (gaz, liquide ou solide). Chaque espèce   est représentée par la quantité   et la fraction molaire  .

Enthalpie libreModifier

L'enthalpie libre et le potentiel chimique sont liés par définition puisque :

  •   l'enthalpie libre molaire partielle du corps   dans la solution idéale ;
  •   l'enthalpie libre molaire partielle du corps   à la concentration  , aux mêmes pression, température et phase que la solution idéale.

On obtient par définition de la solution idéale la relation :

 

Le théorème d'Euler sur les fonctions homogènes du premier ordre permet de calculer l'enthalpie libre de la solution idéale selon :

 

D'où l'enthalpie libre idéale[3] :

Enthalpie libre idéale :  

EnthalpieModifier

La relation de Gibbs-Helmholtz permet d'écrire pour l'enthalpie :

  •   l'enthalpie de la solution idéale ;
  •   l'enthalpie molaire partielle du corps   à la concentration  , aux mêmes pression, température et phase que la solution idéale.

En développant la première relation selon :

 

D'où l'enthalpie idéale[3] :

Enthalpie idéale :  

EntropieModifier

Par définition de l'enthalpie et de l'enthalpie libre, nous avons les relations sur l'entropie :

  •   l'entropie de la solution idéale ;
  •   l'entropie molaire partielle du corps   à la concentration  , aux mêmes pression, température et phase que la solution idéale.

D'où, étant donné les relations obtenues précédemment pour l'enthalpie et l'enthalpie libre, l'entropie idéale[3] :

Entropie idéale :  

VolumeModifier

Le volume et l'enthalpie libre sont liés par l'une des équations d'état :

  •   le volume de la solution idéale ;
  •   le volume molaire partiel du corps   à la concentration  , aux mêmes pression, température et phase que la solution idéale.

En développant la première relation[3] :

 

D'où le volume idéal :

Volume idéal :  

En conséquence, si l'on mélange plusieurs liquides, le volume de la solution idéale résultante est la somme des volumes de chacun des liquides purs. Au contraire, si l'on mélange 1 litre d'eau avec 1 litre d'éthanol, on obtient un volume total d'environ 1,92 litre[4]. Le volume idéal   étant de 2 litres, il y a donc contraction du mélange : les molécules d'eau et d'éthanol s'attirent plus fortement que les molécules de ces liquides purs. Le mélange eau-éthanol n'est donc pas une solution idéale. Pour les gaz, cette loi correspond à la loi d'Amagat des mélanges de gaz parfaits.

Dans une solution liquide idéale constituée d'un soluté   dissout dans un solvant  , le soluté répond à la loi de Henry et le solvant à la loi de Lewis et Randall. Le volume idéal vaut :

 

avec :

  •   la quantité du soluté   ;
  •   la quantité du solvant   ;
  •   le volume molaire partiel du soluté   à dilution infinie dans le solvant   liquide ;
  •   le volume molaire du solvant   liquide pur.

Énergie interneModifier

Par définition de l'énergie interne et de l'enthalpie, nous avons les relations :

  •   l'énergie interne de la solution idéale ;
  •   l'énergie interne molaire partielle du corps   à la concentration  , aux mêmes pression, température et phase que la solution idéale.

D'où, étant donné les relations obtenues plus haut pour l'enthalpie et le volume, l'énergie interne idéale :

Énergie interne idéale :  

Énergie libreModifier

Par définition de l'énergie libre, nous avons les relations :

  •   l'énergie libre de la solution idéale ;
  •   l'énergie libre molaire partielle du corps   à la concentration  , aux mêmes pression, température et phase que la solution idéale.

D'où, étant donné les relations obtenues plus haut pour l'énergie interne et l'entropie, l'énergie libre idéale :

Énergie libre idéale :  

Grandeurs de mélange idéalesModifier

La grandeur de mélange idéale   exprime l'écart entre la grandeur thermodynamique extensive totale   d'une solution idéale et la somme des mêmes grandeurs thermodynamiques extensives   des corps   pris à leur concentration de référence  , aux mêmes quantité, pression, température et phase que la solution idéale :

Grandeur de mélange idéale :  

On a ainsi :

  • l'enthalpie libre de mélange idéale :
 
  • l'enthalpie de mélange idéale :
 
  • l'entropie de mélange idéale :
 
  • le volume de mélange idéal :
 
  • l'énergie interne de mélange idéale :
 
  • l'énergie libre de mélange idéale :
 

Puisque pour tout corps   on a  , alors  ,   et  . Il y a création d'entropie lors d'une opération de mélange idéale.

Note : ne pas confondre grandeur du mélange idéal   et grandeur de mélange idéale  .

Grandeurs extensives des solutions réellesModifier

On considère une solution réelle constituée de   espèces chimiques différentes sous la pression  , à la température   et dans une phase donnée (gaz, liquide ou solide). Chaque espèce est représentée par la quantité   et la fraction molaire  .

Une grandeur extensive   d'une solution réelle est calculée à partir de la grandeur extensive équivalente d'une solution idéale   à laquelle on ajoute une grandeur extensive (selon le cas grandeur résiduelle   ou grandeur d'excès  ) représentant l'écart à l'idéalité.

Grandeurs de mélangeModifier

La grandeur de mélange   exprime l'écart entre une grandeur thermodynamique extensive   d'une solution réelle et la somme des mêmes grandeurs thermodynamiques extensives   des corps   pris à leur concentration de référence  , aux mêmes quantité, pression, température et phase que la solution réelle

Grandeur de mélange :  

Note : ne pas confondre grandeur du mélange   et grandeur de mélange  .

Cas d'un mélange gazeuxModifier

La solution idéale prise comme référence est un mélange de gaz parfaits dont les propriétés sont calculées à partir des propriétés des corps purs à l'état de gaz parfaits aux mêmes pression et température que le mélange gazeux réel. Selon le théorème de Gibbs, un mélange de gaz parfaits est une solution idéale. Les grandeurs extensives   d'un mélange gazeux réel sont obtenues en additionnant aux grandeurs extensives   du mélange de gaz parfaits les grandeurs résiduelles   calculées à partir d'une équation d'état :

 
 

avec   la grandeur des   moles du corps   à l'état de gaz parfait pur aux mêmes pression et température que le mélange gazeux réel.

Les grandeurs extensives d'un mélange gazeux réel sont donc calculées selon :

Grandeurs extensives d'un mélange gazeux réel :  

La grandeur de mélange pour le mélange gazeux réel vaut donc :

Grandeur de mélange :  

En particulier pour l'enthalpie libre  , en introduisant la fraction molaire   et le coefficient de fugacité   de chaque constituant   :

  •   l'enthalpie libre des   moles du corps   à l'état de gaz parfait pur aux mêmes   et   que le mélange gazeux réel ;
  •   l'enthalpie libre de mélange idéale ;
  •   l'enthalpie libre résiduelle ;
  •   l'enthalpie libre de mélange ;

on a :

  •   l'enthalpie libre du mélange gazeux idéal, soit l'enthalpie libre du mélange de gaz parfaits correspondant ;
  •   l'enthalpie libre du mélange gazeux réel ;

soit :

Enthalpie libre d'un mélange gazeux réel :
 

ou, en notant   la fugacité du constituant   :

 

Ainsi, dans une solution gazeuse réelle le potentiel chimique du composant   vaut :

 

avec :

  •   le potentiel chimique, ou enthalpie libre molaire partielle, du corps   dans le mélange gazeux réel aux pression   et température   ;
  •   le potentiel chimique, ou enthalpie libre molaire partielle, du corps   à l'état de gaz parfait pur aux pression   et température   ;
  •   la fugacité du corps   dans le mélange gazeux réel ;
  •   la fraction molaire du corps   dans le mélange gazeux réel ;
  •   le coefficient de fugacité du corps   dans le mélange gazeux réel.

Ceci est également applicable aux liquides aux hautes pressions, pour lesquelles les équations d'état telles que celles de Soave-Redlich-Kwong ou Peng-Robinson représentent correctement les phases liquides. Aux basses pressions (moins de 10 bar), l'approche suivante par grandeur d'excès est préférable.

Cas d'un mélange liquide ou solideModifier

Pour une phase liquide, la solution idéale prise comme référence est un mélange dont les propriétés sont calculées à partir des propriétés des corps purs liquides aux mêmes quantités, pression et température que le mélange liquide réel. Les grandeurs extensives   du mélange liquide réel sont obtenues en additionnant aux grandeurs extensives   du mélange liquide idéal les grandeurs d'excès   calculées à partir d'un modèle de coefficients d'activité :

 
 

avec   la grandeur des   moles du corps   liquide pur aux mêmes pression et température que le mélange liquide réel.

Les grandeurs extensives d'un mélange liquide réel sont donc calculées selon :

Grandeurs extensives d'un mélange liquide réel :  

La grandeur de mélange pour le mélange liquide réel vaut donc :

Grandeur de mélange :  

En particulier pour l'enthalpie libre  , en introduisant la fraction molaire   et le coefficient d'activité   de chaque constituant   :

  •   l'enthalpie libre des   moles du corps   liquide pur aux mêmes   et   que le mélange liquide réel ;
  •   l'enthalpie libre de mélange idéale ;
  •   l'enthalpie libre d'excès ;
  •   l'enthalpie libre de mélange ;

on a :

  •   l'enthalpie libre du mélange liquide idéal ;
  •   l'enthalpie libre du mélange liquide réel ;

soit :

Enthalpie libre d'un mélange liquide réel :
 

ou, en notant   l'activité chimique du constituant   :

 

Ainsi, dans une solution liquide réelle le potentiel chimique du composant   vaut :

 

avec :

  •   le potentiel chimique, ou enthalpie libre molaire partielle, du corps   dans le mélange liquide réel aux pression   et température   ;
  •   le potentiel chimique, ou enthalpie libre molaire partielle, du corps   à l'état de liquide pur aux pression   et température   ;
  •   l'activité du corps   dans le mélange liquide réel ;
  •   la fraction molaire du corps   dans le mélange liquide réel ;
  •   le coefficient d'activité du corps   dans le mélange liquide réel.

La même approche est appliquée aux solides, la solution idéale solide étant basée sur les propriétés des corps purs solides aux mêmes pression et température que le mélange réel. Il est alors nécessaire de disposer d'un modèle de coefficients d'activité pour les solides.

Notes et référencesModifier

NotesModifier

  1. (en) J. P. O'Connell et J. M. Haile, Thermodynamics : Fundamentals for Applications, Cambridge University Press, (ISBN 978-1-139-44317-3, lire en ligne), p. 435.
  2. Corriou 1985, p. 25-26.
  3. a b c d e f g et h Schwarzentruber « Solution idéale ».
  4. a et b Fiche INRS de l'éthanol.
  5. Tristan Ribeyre, Chimie : Un accompagnement au quotidien, Louvain-la-Neuve/Paris, De Boeck Supérieur, coll. « PC/PC* Tout-en-un - 2e année », , 1136 p. (ISBN 978-2-8041-8774-3, lire en ligne), p. 21-22.

BibliographieModifier

Articles
  • E. Darmois, « La thermodynamique des solutions », J. Phys. Radium, vol. 4, no 7,‎ , p. 129-142 (lire en ligne, consulté le ).
Ouvrages
  • Jean-Pierre Corriou, Thermodynamique chimique : Diagrammes thermodynamiques, vol. J 1026, Techniques de l'ingénieur, coll. « base documentaire Thermodynamique et cinétique chimique, pack Opérations unitaires. Génie de la réaction chimique, univers Procédés chimie - bio - agro », , p. 1-30.
  • Jean-Pierre Corriou, Thermodynamique chimique : Équilibres thermodynamiques, vol. J 1028, Techniques de l'ingénieur, coll. « base documentaire : Thermodynamique et cinétique chimique, pack : Opérations unitaires. Génie de la réaction chimique, univers : Procédés chimie - bio - agro », , p. 1-31.
  • Jean Vidal, Thermodynamique : application au génie chimique et à l'industrie pétrolière, Paris, Éditions Technip, coll. « Publications de l'Institut français du pétrole. », , 500 p. (ISBN 978-2-7108-0715-5, OCLC 300489419, lire en ligne), p. 159.

Liens externesModifier

Voir aussiModifier

Sur les autres projets Wikimedia :