Ouvrir le menu principal

Fonction caractéristique (théorie des ensembles)

Fonction de la théorie des ensembles
(Redirigé depuis Fonction caractéristique (mathématiques))
Page d'aide sur l'homonymie Cet article concerne les fonctions caractéristiques en théorie des ensembles. Pour les articles homonymes, voir Fonction caractéristique. Pour les fonctions indicatrices en analyse convexe, voir Fonction indicatrice (analyse convexe).
Le graphe de la fonction indicatrice d'un sous-ensemble à deux dimensions d'un carré.

En mathématiques, une fonction caractéristique, ou fonction indicatrice, est une fonction définie sur un ensemble E qui explicite l’appartenance ou non à un sous-ensemble F de E de tout élément de E.

Formellement, la fonction caractéristique d’un sous-ensemble F d’un ensemble E est une fonction :

Une autre notation souvent employée pour la fonction caractéristique de F est 1F, parfois aussi I (i majuscule).

Le terme de fonction indicatrice est parfois utilisé pour fonction caractéristique. Cette dénomination évite la confusion avec la fonction caractéristique utilisée en probabilité mais en induit une autre, avec la fonction indicatrice en analyse convexe.

La fonction 1F peut désigner la fonction identité.

Sommaire

PropriétésModifier

Si A et B sont deux sous-ensembles de E alors

 

et

 

L'application

 

est une bijection, de l'ensemble   des parties de E dans l'ensemble {0, 1}E des applications de E dans {0, 1}.

La bijection réciproque est l'application

 ,

f −1({1}) désigne l'image réciproque par f du singleton {1}, c'est-à-dire la partie de E constituée des éléments x tels que f(x) = 1.

ContinuitéModifier

Si F est une partie d'un espace topologique E et si la paire {0, 1} est munie de la topologie discrète (qui est la topologie induite par la topologie usuelle de ℝ), l'ensemble des points de E en lesquels la fonction χF : E → {0, 1} est discontinue est la frontière de F.

Exemple : E = ℝ et F =
χ : ℝ → {0, 1} est la fonction qui associe 1 à tout rationnel et 0 à tout irrationnel.
La fonction de Dirichlet : ℝ → ℝ est définie de la même manière (autrement dit : sa corestriction à {0, 1} est χ).
Dans ℝ, la frontière de ℚ est ℝ (puisque ℚ et ℝ\ℚ sont denses dans ℝ) donc χ est discontinue partout.
La fonction de Dirichlet est donc également discontinue partout.

MesurabilitéModifier

Si (E, Ω) est un espace mesurable (c'est-à-dire si Ω est une tribu sur E), une partie de E est un ensemble mesurable (c'est-à-dire appartient à cette tribu) si et seulement si son indicatrice est une fonction mesurable.

Voir aussiModifier

Articles connexesModifier

BibliographieModifier