Fonction mesurable

Fonction définie entre deux espaces mesurables dont la tribu image réciproque par la fonction est incluse dans la tribu de l'ensemble de départ. Application sur laquelle il est possible de définir une mesure

Soient E et F des espaces mesurables munis de leurs tribus respectives ℰ et ℱ.

Une fonction f : E F est dite (ℰ, ℱ)-mesurable si la tribu image réciproque par f de la tribu ℱ est incluse dans ℰ, c'est-à-dire si :

L'identité, la composée de deux fonctions mesurables, sont mesurables. Les fonctions mesurables fournissent donc à la classe des espaces mesurables une structure de catégorie.

Applications à valeurs réellesModifier

Si F est l'ensemble des réels et si ℱ est sa tribu borélienne, on dira simplement que f est une fonction mesurable sur (E, ℰ).

La tribu borélienne sur ℝ étant engendrée (par exemple) par l'ensemble des demi-droites de la forme ]a , +∞[, le lemme de transport assure que f est une fonction mesurable sur (E, ℰ) si et seulement si l'image réciproque par f de chacune de ces demi-droites est dans ℰ. Par exemple : toute fonction réelle d'une variable réelle qui est monotone est borélienne.

Pour les fonctions à valeurs dans la droite achevée = ℝ ∪ {–∞, +∞}, un résultat analogue se vérifie avec les intervalles ]a , +∞].

Propriétés de passage à la limiteModifier

Soient E un espace mesurable et (fn)n une suite de fonctions mesurables de E dans ℝ (ou même dans ). Alors la fonction f définie par f = supn fn (à valeurs dans ) est mesurable. En effet, l'image réciproque par f de ]a , +∞] peut s'écrire

 

et cet ensemble est une réunion dénombrable d'éléments de ℰ, donc un ensemble mesurable.

Par passage aux opposés, on en déduit que, si les fonctions fn de E dans sont toutes mesurables, alors la fonction infn fn l'est également.

On peut alors montrer que les fonctions limites inférieure et supérieure liminfn → ∞ fn et limsupn → ∞ fn sont, elles aussi, mesurables.

En particulier :

  • les quatre dérivées de Dini d'une fonction mesurable de ℝ dans ℝ sont elles-mêmes mesurables ;
  • toute limite simple de fonctions mesurables est mesurable (ce qui d'ailleurs se démontre directement et plus généralement pour des fonctions à valeurs dans un espace métrique – mais pas à valeurs dans un espace topologique quelconque[1]) ;
  • toute fonction dérivée est mesurable.

Approximation par des fonctions continuesModifier

Si (E, ℰ) est un espace métrisable séparable muni de sa tribu borélienne, toute fonction mesurable sur E (à valeurs réelles) et bornée est limite monotone de fonctions bornées continues[2].

Notes et référencesModifier

  1. (en) Richard M. Dudley (en), Real Analysis and Probability, CUP, , 2e éd., 555 p. (ISBN 978-0-521-00754-2, lire en ligne), p. 125-126.
  2. (en) Charalambos D. Aliprantis et Kim C. Border, Infinite Dimensional Analysis : A Hitchhiker's Guide, Springer, , 3e éd., 703 p. (ISBN 978-3-540-32696-0, lire en ligne), p. 128.

Article connexeModifier

Théorème de la limite simple de Baire