Cube parfait
En mathématiques, un cube parfait (un cube s'il n'y a pas ambiguïté) est le cube d'un entier naturel. Les dix-sept premiers cubes parfaits[1] sont:
Puissance | 03 | 13 | 23 | 33 | 43 | 53 | 63 | 73 | 83 | 93 | 103 | 113 | 123 | 133 | 143 | 153 | 163 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Résultat | 0 | 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1000 | 1331 | 1728 | 2197 | 2744 | 3375 | 4096 |
Nombre cubique
modifierUn nombre cubique est un nombre figuré polyédrique (donc entier strictement positif) qui peut être représenté géométriquement par un cube[2]. Par exemple, 8 est un nombre cubique puisqu'il peut être représenté par un cube de 2 × 2 × 2 points. Les nombres cubiques sont donc exactement les cubes parfaits strictement positifs, le n-ième étant n3.
Obtention du nombre cubique d'ordre n
modifierOn obtient à partir de la relation :
où sont les nombres de sommets, arêtes et faces du dodécaèdre, son symbole de Schläfli : {nombre d'arêtes par face, nombre d'arêtes (et aussi de faces) par sommet} et le nombre k-gonal d'ordre 'n' [3].
On obtient donc .
D'où .
Propriétés
modifierLe produit de deux nombres cubiques est un nombre cubique.
La somme des n premiers nombres cubiques est le carré du n-ième nombre triangulaire : Il n'existe pas pour les nombres cubiques d'identité similaire à celle des triplets pythagoriciens pour les nombres carrés. En effet, une preuve élémentaire, amorcée par Euler, montre qu'il n'y a aucune solution non triviale à a3 + b3 = c3 avec a, b et c entiers (c'est un cas particulier du théorème de Fermat-Wiles).
Notes et références
modifier- Pour les 10 000 premiers, voir le ce lien de la suite A000578 de l'OEIS.
- (en) Eric W. Weisstein, « Cubic Number », sur MathWorld.
- (en) Elena Deza et Michel Deza, Figurate Numbers, Singapour, World Scientific Publishing, , 456 p. (ISBN 978-981-4355-48-3, lire en ligne), p. 114