Énergie cinétique

énergie emmagasinée par un corps en mouvement
(Redirigé depuis Energie cinétique)

En physique, l'énergie cinétique est l’énergie que possède un corps du fait de son mouvement dans un référentiel donné. Dans le Système international, son unité de mesure est le joule (J).

Énergie cinétique
Description de cette image, également commentée ci-après
L'énergie cinétique du boulet est utilisée pour détruire un édifice.
Unités SI joule (J)
Dimension M·L 2·T −2
Nature Grandeur scalaire extensive
Symbole usuel , ou
Lien à d'autres grandeurs


L'énergie cinétique d'un point matériel dans un référentiel galiléen est égale à la somme des travaux des forces appliquées pour faire passer le point du repos à un mouvement. Ce n'est pas un invariant galiléen, sa valeur dépend du référentiel choisi.

Les wagons des montagnes russes possèdent une énergie cinétique maximale en bas de leur parcours. Lorsqu'ils commencent à monter, l'énergie cinétique est convertie en énergie potentielle.

Histoire

modifier

L'expression énergie cinétique provient du grec ἐνέργεια / enérgeia, « force en action » et κίνησις / kínêsis, « mouvement ».

Gottfried Leibniz, s'opposant ainsi à Descartes qui estimait que la quantité de mouvement se conservait toujours, développa l'idée de la « force vive » (vis viva), à laquelle il attribuait la valeur  . La force vive est donc le double de l'énergie cinétique.

« Il y a longtemps déjà que j’ai corrigé la doctrine de la conservation de la quantité de mouvement, et que j’ai posé à sa place quelque chose d’absolu, justement la chose qu’il faut, la force (vive) absolue… On peut prouver, par raison et par expérience, que c’est la force vive qui se conserve[1]… »

Définition

modifier

Pour un point

modifier

Dans la théorie de la relativité, l'énergie cinétique   d'un point matériel de masse inerte  [N 1] se déplaçant à une vitesse   dans un référentiel donné vaut :

  avec  

Le coefficient   (« gamma ») est le facteur de Lorentz,   est la vitesse de la lumière.

Dans les cas non relativistes, c'est-à-dire lorsque la vitesse du point est négligeable devant la vitesse de la lumière, le développement limité de l'énergie cinétique   est :

 

Le terme du premier ordre est l'énergie cinétique classique. Pour un objet de 1 kg allant à la vitesse de 10 km/s, la différence entre énergie cinétique relativiste et classique est d'environ 0,04 J pour une énergie cinétique classique de 50 MJ, soit un écart relatif d'environ  , ce qui en fait une très bonne approximation.

Pour un solide

modifier

On peut assimiler un corps à un système de points matériels   de masses   et de vitesses  . En notant   la masse totale du corps, on a  .

Conformément à l'extensivité de l'énergie cinétique, l'énergie cinétique   du système de points peut être définie comme la somme des énergies cinétiques des points matériels constituant le système :

 

Cette expression est générale et ne préjuge pas de la nature du système, déformable ou pas. En passant à la limite des milieux continus et en intégrant sur le volume, on obtient :

 

En notant :

Mise en évidence

modifier

Dans le domaine de validité de la mécanique newtonienne, la notion d'énergie cinétique peut être mise en évidence pour un point matériel de masse   constante.

La relation fondamentale de la dynamique s'écrit :

 

avec   la résultante des forces appliquées au point matériel. Elle comprend les forces d'inertie dans le cas d'un référentiel non galiléen.

En effectuant le produit scalaire par la vitesse   du point, il vient :

 
comme  , alors  

On reconnait dans le membre de gauche la quantité   qu'on nomme énergie cinétique du point matériel, et dont la dérivée par rapport au temps est égale à la somme des puissances   des forces appliquées au point.

On peut obtenir une expression plus générale en remarquant que  , puisque  . En introduisant la variation infinitésimale de la quantité de mouvement du corps  , on obtient :

 

  désigne la variation d'énergie cinétique.

Dans le domaine de validité de la mécanique relativiste, la masse d'un objet n'est pas invariant de sa vitesse, et en intégrant on obtient finalement :

 

Théorèmes de l’énergie cinétique

modifier

Ces théorèmes, valables uniquement dans le cadre de la mécanique classique, permettent de relier l’énergie cinétique d’un système aux travaux des forces auxquelles celui-ci a été soumis.

Pour un point

modifier

Dans un référentiel galiléen, pour un point matériel de masse constante parcourant un chemin   entre une position   et une position   :

La variation d’énergie cinétique du point entre   et   est égale à la somme des travaux   des forces qui s'exercent sur le point le long du chemin   :

 

avec   et   les énergies cinétiques du point respectivement aux positions   et  . Le résultat ne dépend pas du chemin   suivi entre   et  , ce qui découle du caractère exact de la différentielle de l'énergie cinétique. Le terme des travaux prend en compte à la fois les forces conservatives et les forces non conservatives. Pour un point matériel, toutes les forces sont extérieures.

On est déduit le théorème de la puissance cinétique :

 

Pour un solide

modifier

Dans un référentiel galiléen, pour un solide déformable[N 2] de masse constante parcourant un chemin   reliant un point   à un point   :

La variation d’énergie cinétique du solide est égale à la somme des travaux des forces intérieures   et extérieures   qui s'exercent sur et dans le solide le long de   :

 

avec   et   les énergies cinétiques du solide respectivement aux positions   et  . Le résultat ne dépend pas du chemin   suivi entre   et  . Les termes des travaux prennent en compte à la fois les forces conservatives et non conservatives.

On est déduit le théorème de la puissance cinétique pour un solide déformable :

 

Démonstration pour un point

modifier

D’après la deuxième loi de Newton, l’accélération du centre de gravité est liée aux forces qui s’exercent sur le point par la relation :

 

Pendant une durée  , le point se déplace de    est la vitesse du solide. On en déduit le travail élémentaire des forces :

 

Si le point parcourt un chemin   d’un point   à un point  , alors le travail total s’obtient en intégrant le long du chemin :

 

La quantité   étant une différentielle exacte, l’intégrale ne dépend pas du chemin   suivi entre   et   et peut donc être obtenue explicitement :

 
 
 

Théorème énergétique de König

modifier

Il est possible de réécrire l'énergie cinétique d'un solide sous la somme de deux termes possédant chacun une interprétation physique.

Énoncé

modifier

Pour un solide de masse totale  , considéré comme un ensemble de points matériels :

L'énergie cinétique d'un ensemble de points matériels s'écrit comme la somme de deux termes :

  avec  

où :

  désigne la vitesse du barycentre du solide dans le référentiel d'étude   ;
  désigne la vitesse de chaque point matériel dans le référentiel barycentrique  , et   sa masse.

L'énergie   est appelée énergie cinétique propre du solide, associée aux déplacements propres au solide comme les rotations et les dilatations. Le premier terme correspond à une énergie cinétique de translation qui ne prendrait pas en compte les mouvements propres du solide.

Pour un solide indéformable

modifier

Pour un solide indéformable, la distance entre chaque point matériel qui le constitue est constante. En d'autres termes, le solide ne se dilate et ne se comprime pas, et ne possède pas de mouvement de torsion. Il peut cependant effectuer une rotation dans le référentiel envisagé.

Dans ce cas, le mouvement du solide peut être décomposé en un mouvement de son centre de masse dans   et un mouvement de rotation autour d'un axe instantané   dans le référentiel barycentrique  .

L'énergie cinétique d'un ensemble de points matériels s'écrit sous la somme de deux termes :

 

En notant :

  •   la vitesse du centre de masse du solide dans le référentiel d'étude   ;
  •   le vecteur moment cinétique du solide par rapport à son centre de masse ;
  •   le vecteur vitesse angulaire instantané du solide. Il ne dépend pas du référentiel.

L'énergie cinétique propre du solide devient alors une énergie cinétique de rotation ou encore une énergie cinétique angulaire.

Si de surcroît, l'axe de rotation   est fixe dans le référentiel barycentrique   bien choisi, le moment cinétique du solide vérifie  , où   est le moment d'inertie du solide par rapport à l'axe  . Son énergie cinétique de rotation se met alors sous la forme  .

Lien avec l'énergie thermique

modifier

L’énergie thermique est l’énergie associée à l'agitation des molécules et des atomes qui forment la matière. Pour un gaz parfait, l'expression de l'énergie thermique prend une forme analogue à l'énergie cinétique :

 

En notant :

De nature quantique, l’énergie thermique se transforme en énergie électromagnétique par rayonnement. Ce rayonnement thermique peut être approché sous certaines conditions par le modèle du rayonnement du corps noir. La relation entre la chaleur, la température et l’énergie cinétique des atomes et des molécules est l’objet de la mécanique statistique et de la thermodynamique.

Notes et références

modifier
  1. Il s'agit de la masse du point au repos, dans son référentiel.
  2. Dans le cas d'un solide indéformable, les puissances et travaux intérieurs sont nuls, et on est ramené au cas du point matériel.

Références

modifier
  1. (en) G. W. Leibniz von Freiherr, « Specimen dynamicum », dans Philip P. Wiener, Leibniz Selections [« Sélections de Leibniz »], New York, Charles Scribner's Sons, (1re éd. 1951), 606 p., 21 cm (ISBN 9780684175959, OCLC 12309633), Part 2: First Principles: Foundations of the Sciences, Chapter 5.

Voir aussi

modifier

Articles connexes

modifier

Liens externes

modifier