Ouvrir le menu principal

Proton

particule subatomique de charge électrique positive
Page d'aide sur l'homonymie Pour les articles homonymes, voir Proton (homonymie).
Proton
Proton quark structure.svg
Représentation schématique de la composition en quarks de valence d'un proton, avec deux quarks u et un quark d. L'interaction forte est transmise par des gluons (représentés ici par un tracé sinusoïdal). La couleur des quarks fait référence aux trois types de charges de l'interaction forte : rouge, verte et bleue. Le choix de couleur effectué ici est arbitraire, la charge de couleur circulant à travers les trois quarks.
Propriétés générales
Classification
Particule composite (baryon)
Composition
Famille
Groupe
Interaction(s)
Symbole
p, p+
Antiparticule
Propriétés physiques
Masse
938,272[2]MeV/c²
(1,672 649×10-27 kg[3])
(1,0072765 u[3])
Charge électrique
+e = 1,602 176 565×10-19 C[3]
Rayon de charge
0,877 fm[3]
0,84184 fm (voir problème de la taille du proton)
Moment dipolaire
< 5,4×10−24 e Cm
Polarisabilité électrique
1,2(6)×10−3 fm³
Moment magnétique
2,792847351(28) μN
Polarisabilité magnétique
1,9(5)×10−4 fm³
Charge de couleur
0
Spin
½
Isospin
½
Parité
+1
Durée de vie
Théorie : infinie (particule stable) ou ~ 1034 ans[4]
Expérience : > 5,9×1033 ans[4]
Forme condensée
½
Historique
Prédiction
Découverte
1919
Découvreur

Le proton est une particule subatomique portant une charge élémentaire positive.

Les protons sont présents dans les noyaux atomiques, généralement liés à des neutrons par l'interaction forte (la seule exception, mais celle de l'isotope le plus répandu, est le noyau d'hydrogène (protium1H), un simple proton). Le nombre de protons d'un noyau est représenté par son numéro atomique Z.

Le proton n'est pas une particule élémentaire : il est composé de trois particules liées, deux quarks up et un quark down, ce qui en fait un baryon.

Dans le cadre du modèle standard de la physique des particules, et aussi expérimentalement dans l'état actuel de nos connaissances, le proton est également stable à l'état libre, en dehors de tout noyau atomique. Certaines extensions du modèle standard prévoient une (extrêmement faible) instabilité du proton libre.

Sommaire

HistoriqueModifier

Le concept d'une particule analogue à l'hydrogène, constituant des autres atomes, s'est graduellement développée au cours du XIXe siècle et du début du XXe siècle. Dès 1815, William Prout émet l'hypothèse que tous les atomes sont composés d'atomes d'hydrogène, sur la base d'interprétations des valeurs des masses atomiques ; cette hypothèse se révèle fausse lorsque ces valeurs sont mesurées avec plus de précision.

En 1886, Eugen Goldstein découvre les rayons canaux et montre qu'ils sont composés de particules chargés positivement (des ions) produits par des gaz. Cependant, comme les ions produits par différents gaz possèdent des rapports charge/masse différents, ils ne sont pas identifiés comme une simple particule, à la différence de l'électron découvert par Joseph Thomson en 1897.

À la suite de la découverte du noyau atomique par Ernest Rutherford en 1911, Antonius van den Broek émet l'hypothèse que la place de chaque élément dans la classification périodique est égale à la charge de son noyau. Cette hypothèse est confirmée expérimentalement par Henry Moseley en 1913.

En 1919, Rutherford prouve que le noyau de l'atome d'hydrogène est présent dans les autres noyaux. Il remarque que lorsque des particules alpha sont envoyées dans un gaz d'azote, ses détecteurs de scintillation indiquent la signature de noyaux d'hydrogène. Il détermine ensuite que cet hydrogène ne peut provenir que de l'azote. Ce noyau d'hydrogène est donc présent à l'intérieur d'un autre noyau. Rutherford baptise la particule correspondante du nom de proton, d'après le neutre singulier du mot grec pour « premier », πρῶτον.

Caractéristiques physiquesModifier

DescriptionModifier

Le proton est un fermion de spin ½. Il est composé de trois quarks de valence, ce qui en fait un baryon. Les deux quarks up et le quark down du proton sont liés par l'interaction forte, transmise par des gluons, ces gluons échangés entre les quarks et qui, par l’énergie de liaison qu’ils représentent, vont constituer environ 99 % de la masse du proton. En plus de ces trois quarks de valence (qui déterminent les nombres quantiques de la particule) et des gluons, le proton, comme les autres hadrons, est constitué d'une « mer » de paires de quarks-antiquarks virtuels qui apparaissent et disparaissent en permanence. Les nombres quantiques de ces paires virtuelles s'annulent en moyenne, ne contribuant donc pas à ceux du proton.

Tout comme le neutron, le proton est un nucléon et peut être lié à d'autres nucléons par la force nucléaire à l'intérieur d'un noyau atomique. Le noyau de l'isotope le plus courant de l'hydrogène est un simple proton. Le noyau des isotopes plus lourds, le deutérium et le tritium contiennent un proton lié à un et deux neutrons, respectivement. Tous les autres noyaux atomiques sont composés de deux protons ou plus et d'un certain nombre de neutrons. Le nombre de protons d'un noyau détermine (par l’intermédiaire des électrons qui lui sont associés) les propriétés chimiques de l'atome et donc quel élément chimique il représente.

La masse du proton est égale à environ 1,007 276 5 u, soit à peu près 938,2720[2] MeV/c2 ou 1,672 62 × 10−27 kg[5]. La masse du proton est environ 1 836,15 fois celle de l'électron. Sa charge électrique est très exactement égale à une charge élémentaire positive (e), soit +1,602 176 565 × 10−19 C ; l'électron possède une charge électrique négative, de valeur opposée à celle du proton. La charge électrique du proton est égale à la somme des charges électriques de ses quarks : celle de chaque quark up vaut e et celle du quark down vaut −⅓ e. Son rayon est d'environ 0,84 fm.

Taille du protonModifier

Article détaillé : Problème de la taille du proton.

Le rayon de charge du proton, c'est-à-dire le rayon moyen quadratique de sa distribution de charge, est de l'ordre de 0,841 84 fm[6]. Cependant, cette mesure extrêmement précise de la taille du proton réalisée grâce à de l'hydrogène muonique pose de nombreuses questions car d'autres expérimentations utilisant des électrons donnent au proton un rayon moyen situé entre 0,875 et 0,88 fm. À la mi 2016, toutes les tentatives d'explication de cette différence entre résultats expérimentaux ont échoué[7],[8].

StabilitéModifier

Article détaillé : Désintégration du proton.

Le proton libre (non lié à d'autres nucléons ou à d'électrons) est une particule stable, dont la désintégration spontanée en d'autres particules n'a jamais été observée. Sa demi-vie a été mesurée comme supérieure à 6,6 × 1033 ans[9]. Sa durée de vie moyenne est au minimum de l'ordre de 2,1×1029 ans[5],[10].

En revanche, les protons peuvent se transformer en neutrons, par capture électronique. Ce processus n'est pas spontané, et nécessite un apport d'énergie. La réaction émet un neutron ainsi qu'un neutrino électronique :  

Le processus est réversible : les neutrons peuvent se transformer en protons par désintégration bêta, une forme de désintégration radioactive. De fait, un neutron libre se désintègre de cette façon avec une durée de vie moyenne d'environ 15 minutes.

Pression à l'intérieur du protonModifier

Le proton étant constitué de quarks confinés via la présence de gluons, on peut définir l'équivalent d'une pression ressentie par les quarks. On peut en calculer la distribution, en fonction de la distance au centre, à l'aide de la diffusion Compton d'électrons très énergétiques (DVCS, pour deeply virtual Compton scattering). Cette pression est maximale au centre : environ 1035 Pa, soit plus encore qu'au centre des étoiles à neutrons[11]. Elle est positive (donc répulsive) jusqu'à une distance radiale d'environ 1 femtomètre (fm), négative (donc attractive) au-delà, et très faible au-delà d'environ 2 fm.

ChimieModifier

L'Union internationale de chimie pure et appliquée indique explicitement que le mot proton ne doit pas être utilisé pour désigner l'espèce H+ dans son abondance naturel[12]. En effet, en plus de protons (1H+, aussi noté simplement H+ en l'absence d'ambiguïté), ions correspondant à l'isotope de l'hydrogène appelé protium (1H, ou simplement H en l'absence d'ambiguïté), les ions H+ issu d'hydrogène naturel peuvent être des deutérons (2H+ ou D+) ou des tritons (3H+ ou T+), correspondant respectivement aux isotopes nommés deutérium (2H ou D) et tritium (3H ou T).

En chimie et biochimie, le terme proton se réfère le plus souvent au cation H+, dans la mesure où un atome d'hydrogène privé de son unique électron se résume à un proton. De cette appellation découlent les expressions courantes en chimie de proticité, solvant protique/solvant aprotique, réaction de protonation/déprotonation, RMN du proton, etc.

En solution aqueuse, un proton n'est normalement pas distinguable car il s'associe très facilement aux molécules d'eau pour former l'ion oxonium (également, et improprement, appelé ion hydronium) H3O+.

Notes et référencesModifier

  1. Adair, R.K., The Great Design: Particles, Fields, and Creation, Oxford University Press, , p. 214.
  2. a et b Eric Simon, « La différence de masse entre proton et neutron obtenue par calcul pour la première fois », sur ca-se-passe-la-haut.fr, (consulté le 18 mars 2016).
  3. a b c et d CODATA 2010.
  4. a et b Futura-Sciences, « Quand les protons disparaîtront-ils de l'univers ? », sur Futura-Sciences (consulté le 9 mai 2016).
  5. a et b (en) [PDF] « p », Particle Data Group, .
  6. (en) Randolf Pohl et al., « The size of the proton », Nature, vol. 466,‎ , p. 213-216 (ISSN 0028-0836, DOI 10.1038/nature09250).
  7. Article "Le proton, un problème de taille" de Jan Bernauer et Randolph Pohl, paru dans le n°439 (mai 2014) de la revue Pour la science.
  8. Carl E. Carlson, « The proton radius puzzle », Progress in Particle and Nuclear Physics, vol. 82,‎ , p. 59–77 (DOI 10.1016/j.ppnp.2015.01.002, arXiv 1502.05314, lire en ligne).
  9. (en) H. Nishino et al., « Search for Proton Decay via p → e+ π0 and p → μ+ π0 in a Large Water Cherenkov Detector », Phys. Rev. Lett., vol. 102, no 14,‎ , p. 141801-141805 (DOI 10.1103/PhysRevLett.102.141801).
  10. (en) S.N. Ahmed et al., « Constraints on nucleon decay via invisible modes from the Sudbury Neutrino Observatory », Phys. Rev. Lett., vol. 92,‎ , p. 102004-102007 (DOI 10.1103/PhysRevLett.92.102004).
  11. (en) V. D. Burkert, L. Elouadrhiri et F. X. Girod, « The pressure distribution inside the proton », Nature, vol. 557,‎ , p. 396-399 (DOI 10.1038/s41586-018-0060-z).
  12. http://goldbook.iupac.org/P04903.html.

Voir aussiModifier

Sur les autres projets Wikimedia :

Articles connexesModifier

Liens externesModifier