En mathématiques, les multi-indices généralisent la notion d'indice entier en permettant d'envisager plusieurs variables entières pour une indexation. L'utilisation des multi-indices a pour but de simplifier les formules qu'on rencontre dans le calcul à plusieurs variables, que ce soit pour le calcul polynomial ou en analyse vectorielle.

Un multi-indice de taille n est un vecteur

à coefficients entiers positifs.

Au multi-indice α est associé sa longueur (parfois appelée module) , définie par :

Notations adaptées

modifier

On utilise pour un vecteur   de composantes  , une notation sous forme d'exponentiation pour représenter le calcul polynomial

 

Et on peut introduire l'opérateur différentiel

 

Il faut prendre garde à n'utiliser cette notation que dans le cas de fonctions pour lesquelles l'ordre des dérivations n'importe pas (c'est-à-dire vérifiant par exemple les conditions du théorème de Schwarz).

Plus généralement, on peut définir un opérateur différentiel d'ordre N pour n variables par une formule telle que

 

Pour écrire les formules classiques, on introduit une multi-factorielle généralisant la factorielle :

 

Et il est possible de généraliser les coefficients binomiaux :

 

Les coefficients multinomiaux peuvent également s'écrire à l'aide d'une notation multi-indice :

  

Enfin pour décrire les domaines d'indexation il est utile de donner une relation d'ordre partielle sur les multi-indices

 

Application à des formules usuelles

modifier

Avec ces notations un certain nombre de formules classiques s'écrivent de façon relativement compacte et admettent des généralisations vectorielles.

Calcul polynomial

modifier

Généralisation de la formule du binôme de Newton

 

On peut également donner une écriture compacte de la formule du multinôme

 

Il est souvent utile de disposer de l'effet d'un opérateur différentiel sur un monôme

 

Calcul infinitésimal

modifier

Généralisation de la formule de Leibniz pour deux fonctions numériques suffisamment régulières u, v

 

Il en découle une formule d'intégration par parties : pour des fonctions suffisamment régulières dont l'une au moins est à support compact il vient

 

Formule qui est utile par exemple en distribution.

Écriture des différentes formules de Taylor: pour une fonction suffisamment régulière

 

où l'expression du dernier terme (reste) dépend de la formule utilisée. Par exemple pour la formule avec reste intégral il vient