Ouvrir le menu principal

Connexité simple

Caractère d'un espace topologique dans lequel tout lacet est homotope à un point

En topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexité : là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ».

On formalise cela en disant que tout lacet tracé dans un espace simplement connexe doit pouvoir être réduit continûment (c'est-à-dire par homotopie) à un point.

DéfinitionModifier

Si X est un espace topologique connexe par arcs, on dit qu'il est simplement connexe si tout lacet tracé sur X est homotope à un point.

Intuitivement, on peut tirer sur le lacet pour le rétrécir jusqu'à ce qu'il ne forme plus qu'un point, il n'y a pas d'obstacle (c'est-à-dire de trou).

On parle aussi de parties simplement connexes ; une partie d'un espace topologique est dite simplement connexe si, munie de la topologie induite, elle constitue un espace topologique simplement connexe.

Formulations équivalentes :

  • On note   le cercle unité et   le disque unité. Un espace topologique X connexe par arcs est simplement connexe si et seulement si toute fonction continue injective[réf. nécessaire]   peut être prolongée en une fonction continue  .
    Autrement dit tout plongement d'un cercle dans X peut être prolongé à un plongement du disque.[réf. nécessaire]
  • Un espace topologique connexe par arcs est simplement connexe si et seulement si deux chemins quelconques p, q : [0, 1] → X tracés sur X sont homotopes.
  • Un espace topologique connexe par arcs est simplement connexe si et seulement si son groupe fondamental est trivial, c'est-à-dire réduit à l'élément neutre.

ExemplesModifier

Sont simplement connexes :

Ne sont pas simplement connexes :

PropriétésModifier

  • Tout revêtement d'un espace simplement connexe et localement connexe par arcs est un revêtement trivial.
  • Le cercle polonais possède un revêtement de degré 2 non trivial.
  • Tout revêtement simplement connexe et localement connexe par arcs d'un espace est un revêtement universel.
  • Propriété de relèvement des homotopies (en). Toute application f continue d'un espace simplement connexe X dans la base B d'un revêtement π : Y B, se relève, c'est-à-dire qu'il existe une application continue g : X Y telle que f = π o g.
    Le cas particulier X = [0, 1] est la propriété de relèvement des chemins.

GénéralisationsModifier

Un espace est localement simplement connexe lorsque tout point admet une base de voisinages simplement connexes. Les espaces localement contractiles sont localement simplement connexes.

Un espace est dit semi-localement simplement connexe (en) (par arcs) si tout point admet un voisinage U où tout lacet, contenu dans U, peut être déformé en un point dans X.

Articles liésModifier