Compactification (mathématiques)

En topologie, la compactification est un procédé général de plongement d'un espace topologique comme sous-espace dense d'un espace compact. Le plongement est appelé le compactifié. Un tel plongement existe si et seulement si l'espace est complètement régulier.

En topologie générale, les plus célèbres compactifications sont :

Ces compactifications se définissent à unique homéomorphisme près. Elles peuvent se caractériser par des propriétés universelles : chacun de ces compactifiés se définit comme le spectre d'une algèbre fonctionnelle.

Néanmoins, d'un point de vue géométrique, une compactification consiste à ajouter des points à l'infini, et d'en définir les voisinages.

Spectre d'algèbresModifier

Exemples de compactificationsModifier

Compactifié d'AlexandroffModifier

Compactifié de Stone-ČechModifier

Compactifié de BohrModifier

Articles connexesModifier