Triple produit de Jacobi

Propriété mathématique

En mathématiques, le triple produit de Jacobi, dû à Charles Gustave Jacob Jacobi, est une relation qui exprime les fonctions thêta de Jacobi, normalement écrites sous forme de séries, comme un produit infini. Cette relation généralise plusieurs autres résultats, tels que le théorème des nombres pentagonaux.

Soient x et z des nombres complexes, avec |x| < 1 et z ≠ 0. Alors[1],[2],[3],[4],[5]

.

Reformulations modifier

Ceci peut être vu comme une relation faisant intervenir les fonctions thêta. Prenons   et   ; le membre de droite est alors la fonction thêta :

 .

Le triple produit de Jacobi revêt une forme très compacte sous forme de q-séries : en posant   et  , il se réécrit

 

ou encore

 ,

où les   sont des q-symboles de Pochhammer :  .

Il prend également une forme particulièrement élégante lorsqu'il est exprimé avec la fonction thêta de Ramanujan (en) (en posant q = ab et c = 1/b) : pour  ,

 .

Corollaires modifier

Le théorème des nombres pentagonaux d'Euler se déduit du triple produit de Jacobi en prenant   et   dans  . On obtient alors l'expression de la fonction d'Euler[6],[7] :

 .

En prenant   dans  , on obtient :

 .

On peut se servir du triple produit de Jacobi pour démontrer l'identité du produit quintuple[8] :

 .

Notes et références modifier

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Jacobi triple product » (voir la liste des auteurs).
  1. G. H. Hardy et E. M. Wright (trad. de l'anglais par François Sauvageot, préf. Catherine Goldstein), Introduction à la théorie des nombres [« An Introduction to the Theory of Numbers »] [détail de l’édition], p. 364, th. 352.
  2. (en) Tom M. Apostol, Introduction to Analytic Number Theory, Springer, , chap. 14, p. 304-328, th. 14.6.
  3. (en) Victor Kac et Pokman Cheung, Quantum Calculus, Springer, (lire en ligne), p. 35-36
  4. (en) Daniel Duverney, Number Theory, World Scientific, (lire en ligne), p. 104-105.
  5. Une démonstration de l'identité formelle, reposant sur les deux identités d'Euler, figure dans la leçon « Introduction à la théorie des nombres » sur Wikiversité.
  6. Hardy et Wright, p. 367, th. 353.
  7. Apostol 1976, p. 321.
  8. (en) L. Carlitz et M. V. Subbarao (en), « A simple proof of the quintuple product identity », Proc. Amer. Math. Soc., vol. 32,‎ , p. 42-44 (lire en ligne).

Articles connexes modifier