Symboles de Christoffel

En mathématiques et en physique, les symboles de Christoffel (ou coefficients de Christoffel, ou coefficients de connexion) sont une expression de la connexion de Levi-Civita dérivée du tenseur métrique. Les symboles de Christoffel sont utilisés dans les calculs pratiques de la géométrie de l'espace : ce sont des outils de calculs concrets, par exemple pour déterminer les géodésiques des variétés riemanniennes, mais en contrepartie leur manipulation est relativement longue, notamment du fait du nombre de termes impliqués.

Ce sont des outils de base utilisés dans le cadre de la relativité générale pour décrire l'action de la masse et de l'énergie sur la courbure de l'espace-temps.

Au contraire, les notations formelles pour la connexion de Levi-Civita permettent l'expression de résultats théoriques de façon élégante, mais n'ont pas d'application directe pour les calculs pratiques.

L'éponyme[1],[2] des symboles de Chirstoffel[3] est le mathématicien allemand Elwin Bruno Christoffel (-) qui les a introduits en [4] dans un article[5],[6] daté du [7].

PréliminairesModifier

Les définitions données ci-dessous sont valides à la fois pour les variétés riemanniennes et les variétés pseudo-riemanniennes, telles que celles utilisées en relativité générale. On utilise de même la notation des indices supérieurs pour les coordonnées contravariantes, et inférieur pour les coordonnées covariantes.

DéfinitionModifier

Dans une variété riemanienne ou pseudo-riemanienne  , il n'existe pas de système de coordonnées qui s'applique à toute la variété. On peut néanmoins définir localement un repère de Lorentz (voir définition d'une variété topologique : on peut trouver en chaque point de   un voisinage ouvert homéomorphe à un ouvert de l'espace  ).

La dérivée covariante permet d'évaluer l'évolution d'un champ de vecteurs   en prenant en compte non seulement ses modifications intrinsèques, mais aussi celle du système de coordonnées. Ainsi, si on prend un repère en coordonnées polaires, les deux vecteurs   et   ne sont pas constants et dépendent du point étudié. La dérivée covariante permet de prendre en compte ces deux facteurs d'évolution.

Les symboles de Christoffel   représentent alors l'évolution des vecteurs de base, à travers leur dérivée covariante :

 

On obtient ainsi les coefficients de Christoffel à partir de la connexion   si celle-ci est connue. Réciproquement, la connaissance des coefficients de Christoffel permet de reconstituer l'expression de la connexion en utilisant les propriétés de la dérivée covariante :

 

Les coordonnées du vecteur   sont notées à l'aide d'un point-virgule, selon la définition :

 

En remplaçant   par   dans la relation ci-dessus, on obtient :

 

On voit donc qu'effectivement l'évolution du vecteur   dépend à la fois de son évolution intrinsèque (terme  ) et de celle de la base, rattaché au deuxième terme et notamment à  , symbole de Christoffel.

Ce résultat est valable pour un vecteur   qui est un tenseur d'ordre 1. Pour un tenseur d'ordre   et de rang  , on pourrait obtenir la même chose :

 

Les indices en gras ci-dessus mettent en valeur les contributions des différents composantes de Christoffel. On observe que les indices contravariants donnent lieu à une contribution positive du coefficient de Christoffel, et les indices covariants à une contribution négative.

Expression à partir du tenseur métriqueModifier

Le plus souvent, les coefficients de Christoffel sont calculés à partir du tenseur métrique  , en prenant en compte le fait que

 

car la métrique est conservée localement : on a localement un repère de Lorentz en chaque point de l'espace.

En appliquant à  , tenseur d'ordre 2 et de rang (0,2), l'équation des coefficients de Christoffel donnée ci-dessus (2 coordonnées covariantes donnent 2 contributions « négatives »), en notant   :

 

On trouve alors, en permutant les indices et en exprimant plusieurs valeurs des coefficients :

 

où le tenseur   est l'inverse du tenseur  , défini en utilisant le symbole de Kronecker par  .

Remarque : bien que les symboles de Christoffel soient écrits dans la même notation que les tenseurs, ce ne sont pas des tenseurs. En effet, ils ne se transforment pas comme les tenseurs lors d'un changement de coordonnées.

La plupart des auteurs choisissent de définir les symboles de Christoffel dans une base de coordonnées holonomiques, qui est la convention suivie ici. Dans des coordonnées non holonomiques, les symboles de Christoffel s'expriment dans une formulation plus complexe :

 

où les   sont les coefficients de commutation de la base, c'est-à-dire

 

  sont les vecteurs de base et   correspond au crochet de Lie. Deux exemples de base non holonomiques sont par exemple celles associées aux coordonnées sphériques ou cylindriques.

Par exemple, les seuls termes non constants du tenseur métrique en coordonnées sphériques sont  ,  , et l'on a  ,  ,  . Les éléments non nuls du symbole de Christoffel en fonction du tenseur métrique sont donc peu nombreux :

 

De même, le seul terme non constant du tenseur métrique en coordonnées cylindriques est  , et l'on a  . Les éléments non nuls du symbole de Christoffel en fonction du tenseur métrique sont donc peu nombreux :

 

ContractionModifier

Utilisation en robotiqueModifier

Les symboles de Christoffel apparaissent [8] dans la modélisation dynamique, selon la mécanique rationnelle, des systèmes mécaniques articulés.

Soit un tel système, dont les variables articulaires sont  .

La matrice d'inertie, (symétrique, définie positive), du système étant notée  , son énergie cinétique s'écrit:

 

On peut alors associer [9] au système un espace de configuration riemannien, de métrique :

 


Avec les notations suivantes :

  •  , l'énergie potentielle (qui est proportionnelle à l'intensité de la pesanteur).
  •   .
  •  , les efforts des actionneurs, (auxquels on peut ajouter des frottements non conservatifs).


Et en introduisant les symboles de Christoffel de première espèce [10] :

 

Les équations du mouvement sont des équations de Lagrange qui prennent [11] la forme :

 

En pratique, le calcul algébrique des coefficients de ces équations est envisageable [12] avec un logiciel de calcul symbolique.

Notes et référencesModifier

  1. Chen 2014, chap. 2, § 2.3, rem. 2.1, p. 37.
  2. Fré 2018, chap. 7, § 7.5, p. 210.
  3. Taillet, Villain et Febvre 2018, s.v. connexion affine, p. 149, col. 1.
  4. Hazewinkel 1988, s.v. Christoffel symbol, p. 140, col. 1.
  5. Springer 2012, chap. 9, § 9.1, p. 109, n. 1.
  6. Christoffel 1869.
  7. Christoffel 1869, p. 70.
  8. (en) Alessandro De Luca, Dipartimento di Ingegneria informatica, automatica e gestionale Antonio Ruberti - DIAG (Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Università di Roma "La Sapienza"), « Dynamic model of robots: Lagrangian approach. », Robotics 2 (consulté le 20 septembre 2013), p. 20-22
  9. André Lichnérowicz, Élément de calcul tensoriel, Paris, Armand Colin, coll. « Section de Mathématiques » (no 259), 4° édition, 1958 (réimpr. 8° edition, 1967), 4°édition revue éd. (1re éd. 1950), 218 p., {unité, chap. 6 (« La dynamique des systèmes holonomes. A-Liaisons indépendantes du temps »), p. 133-148 
  10. Attention, on rencontre des variantes dans l'ordre de l'écriture des indices i,j, k
  11. Formule classique, voir par exemple: (en) Scott Robert Ploen, Geometric Algorithms for the Dynamics and Control of Multibody Systems, Irvine, University of California Press, , 158 p., {unité (présentation en ligne, lire en ligne), chap. 3 (« Dynamics of Open Chain Multibody Systems - Join Space »), p. 548-552 
  12. Il existe aussi des algorithmes, basés sur la formulation vectorielle de la mécanique, qui permettent de calculer numériquement ces coefficients.

Voir aussiModifier

BibliographieModifier

  : document utilisé comme source pour la rédaction de cet article.

Publication originaleModifier

Dictionnaires et encyclopédiesModifier

Articles connexesModifier