Nombre tétraédrique

nombre polyédrique
(Redirigé depuis Nombre tetraedrique)

En arithmétique géométrique, un nombre tétraédrique, ou nombre pyramidal triangulaire, est un nombre figuré qui peut être représenté graphiquement par une pyramide de base triangulaire, c'est-à-dire un tétraèdre, dont chaque couche représente un nombre triangulaire. Pour tout entier naturel non nul, le n-ième nombre pyramidal triangulaire, somme des premiers nombres triangulaires, est donné par les formules [1] :

Le 5e nombre tétraédrique est 15 + 10 + 6 + 3 + 1 = 35.

est le symbole du coefficient binomial. Les nombres tétraédriques sont donc ceux de la quatrième colonne du triangle de Pascal.

Les nombres tétraédriques sont ceux de la colonne d'indice 3 du triangle de Pascal
0 1 2 3 4 5 6 7 8
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1

Les dix premiers[2] sont 1, 4, 10, 20, 35, 56, 84, 120, 165 et 220.

Le 22e est 2024.

Démonstration de la formule modifier

Comme le k-ième nombre triangulaire est égal à  , on a, d'après la formule d'itération de Pascal :

 .

Ceci est en fait un cas particulier de la construction des nombres simpliciaux ; Le nombre tétraédrique   est le n-ième nombre 3-simplicial  .

On peut aussi obtenir   à partir de la formule générale des nombres polyédriques réguliers   , qui donne  , puis  .

Propriétés modifier

La suite d'entiers  , réduite modulo 2, est de période 4.

Les seuls nombres tétraédriques carrés sont[1],[3] P1(3) = 1 = 12, P2(3) = 4 = 22 et P48(3) = 19 600 = 1402.

Le seul nombre tétraédrique pyramidal carré est[1],[4] 1.

Notes et références modifier

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Tetrahedral number » (voir la liste des auteurs).
  1. a b et c (en) Eric W. Weisstein, « Tetrahedral Number », sur MathWorld
  2. Pour les 10 000 premiers, voir ce lien de la suite A000292 de l'OEIS.
  3. A.-J.-J. Meyl, « Solutions de questions proposées dans les Nouvelles annales – Question 1194 », Nouvelles annales de mathématiques, 2e série, vol. 17,‎ , p. 464-467 (lire en ligne).
  4. (en) Frits Beukers (en) et Jaap Top, « On oranges and integral points on certain plane cubic curves », Nieuw Arch. Wisk. (nl), vol. 4, no 6,‎ , p. 203-210 (lire en ligne).

Articles connexes modifier