Ouvrir le menu principal

La chiralité (du grec χείρ, ch[e]ir : main) est une importante propriété d’asymétrie dans diverses branches de la science.

Un objet ou un système est appelé chiral s’il constitue l’image miroir d’un autre objet ou système avec lequel il ne se confond pas. De tels objets se présentent alors sous deux formes, qui sont l’image miroir l’une de l'autre, et ces paires d’images miroirs sont qualifiées d'énantiomorphes (du grec formes opposées) ou, en se référant à des molécules, des énantiomères.

Un objet non chiral est dit achiral. Il est isomorphe à son miroir avec lequel il partage les mêmes propriétés géométriques, c’est-à-dire qu’il existe un isomorphisme de l’espace dans lequel il est défini, qui transforme l'objet en lui-même.

Chiralité en mathématiquesModifier

En mathématiques, un polyèdre est chiral s'il n'est pas superposable à son image par réflexion. Un objet chiral et son image miroir sont dits être énantiomorphes. Le mot chiralité est dérivé du grec χείρ (kheír), la main, l'objet chiral le plus familier; le mot énantiomorphe est formé à partir des mots grecs ἐναντίος (enantíos) 'opposé' et μορφή (morphe) 'forme'. Une figure non chirale est appelée achirale. Si un polyèdre est chiral, il possède deux formes énantiomorphes : une lévogyre (« qui tourne à gauche », en latin lævus : gauche) et une dextrogyre (« qui tourne à droite », en latin dexter : droit), comme les deux cubes adoucis ci-dessous.

   

Forme chiraleModifier

La chiralité peut être comparée à un simple problème de gants. Tous les enfants ont déjà été confrontés à un problème de chiralité en mettant la main droite dans le gant gauche et inversement. Un gant est un objet chiral car il n'est pas superposable à son image dans un miroir. Tout comme les pieds.

La distribution d'éléments différents dans l'espace, par exemple autour d'un point, peut conduire à des situations non identiques, donc des objets différents. Ainsi les dés à jouer sont des objets chiraux : la règle de construction veut que la somme des faces opposées soit égale à sept. Posons le six sur la face supérieure et par conséquent le un sur la face inférieure, puis le cinq devant donc le deux derrière. Il reste deux façons non équivalentes de terminer : le quatre à gauche et le trois à droite, ou inversement. On obtient deux formes énantiomorphes images l'un de l'autre dans le miroir.

L’hélice (et par extension les cordes/ficelles tournées, pas de vis, tire-bouchons, poignées de porte, etc) et le ruban de Möbius, de même que les tétrominos de forme S et Z du jeu vidéo populaire Tetris, montrent aussi la chiralité, bien que ces derniers soient seulement en deux dimensions.

Beaucoup d’autres objets familiers montrent la même symétrie chirale du corps humain (ou énantiomorphe) — gants, verres, chaussures, jambes d'une paire de bas, ciseaux, guitare, etc. — Une notion de chiralité similaire est considérée en théorie des nœuds, comme expliqué ci-dessous. Ou encore en biochimie pour la conformation et la réplication des protéines et pour expliquer le comportement pathogène et difficile à traiter de certains virions ou de maladies auto-immunes, et en physique subnucléaire pour les phénomènes de spin.

Chiralité et groupe de symétrieModifier

Une figure est achirale si et seulement si son groupe de symétrie contient au moins une isométrie de renversement d'orientation. (En géométrie euclidienne, toute isométrie peut être écrite comme   avec une matrice orthogonale   et un vecteur  . Le déterminant de   est alors soit 1 ou -1. Si c'est -1, l'isométrie est un renversement d'orientation, sinon elle est une conservation d'orientation).

Chiralité dans trois dimensionsModifier

En trois dimensions, chaque figure qui possède un plan de symétrie ou un centre de symétrie est nécessairement achirale :

  • Un plan de symétrie d'une figure   est un plan  , tel que   est invariant avec l’application  , lorsque   est choisi comme étant le plan  -  du système de coordonnées.
  • Un centre de symétrie d’une figure   est un point  , tel que   est invariant par l’application  , lorsque   est choisi comme étant l’origine du système de coordonnées).

Notes:

  • Il existe néanmoins des figures achirales qui manquent de plan et/ou de centre de symétrie.
    1. Un exemple est la figure :
       
      qui est invariante sous l’isométrie de renversement d’orientation   ; elle est donc achirale, mais ne possède ni plan de symétrie, ni centre de symétrie.
    2. La figure
       
      est également achirale ; elle a l’origine pour centre de symétrie, mais elle n'a pas de plan de symétrie.
  • Les figures achirales peuvent aussi avoir un axe de centre.

Chiralité en deux dimensionsModifier

En deux dimensions, chaque figure qui possède un axe de symétrie est achirale, et il peut être montré que chaque figure achirale bornée doit avoir un axe de symétrie. (Un axe de symétrie d'une figure   est une droite  , tel que   est invariante par l'application  , lorsque   est choisie comme étant l'axe   du système de coordonnées).

Considérons le motif suivant :

< < < < < < < < < <
 < < < < < < < < < <

Cette figure est chirale, elle n’est pas identique à son image miroir suivant un axe ou l’autre :

 < < < < < < < < < <
< < < < < < < < < <
 > > > > > > > > > >
> > > > > > > > > >

Mais, si on prolonge le motif dans deux directions vers l'infini, on récupère une figure achirale (non-bornée) qui ne possède pas d'axe de symétrie. Son groupe de symétrie est un groupe de frise engendré par une réflexion glissée.

Théorie des nœudsModifier

Un nœud est dit achiral (ou amphichiral) s’il peut être déformé continument en son image miroir ; sinon, il est dit chiral (en). Par exemple, le nœud trivial et le nœud de huit (en) sont achiraux, alors que le nœud de trèfle est chiral.

Chiralité en physiqueModifier

En physiqueModifier

Un champ vectoriel a la symétrie miroir : Exemple : le champ électrique produit par un « électron miroir » est l'image dans le miroir du champ produit par l'électron. En revanche le champ magnétique produit par le mouvement de l'« électron miroir » est inversé : le champ magnétique Bm derrière le miroir s'obtient en prenant l'antisymétrique du champ B devant le miroir. Cela provient de la définition du champ magnétique par un produit vectoriel ; le produit vectoriel n'est pas un vecteur, mais un tenseur antisymétrique qui ne comporte que trois composantes non nulles dans un espace à trois dimensions et qui peut donc être représenté par trois composantes : un pseudo-vecteur.

En physique des particulesModifier

Les lois fondamentales de la physique doivent être achirales, sauf l'interaction faible, qui n'est pas invariante dans la symétrie miroir, sauf à remplacer les particules par leurs antiparticules ; et la désintégration du kaon semble ne pas vérifier cette symétrie.

La chiralité est importante en physique des particules du fait que l'univers est asymétrique pour les spins.

Or jusqu'à présent, les neutrinos détectés ont une hélicité gauche (valeur de spin projeté sur la direction du mouvement = -1/2 < 0 ) et les antineutrinos une hélicité droite (valeur de spin projeté sur la direction du mouvement = +1/2 > 0) ; on peut comprendre cette rupture de la parité (invariance pour l'inversion du système de coordonnées spatiales) par le fait que le neutrino a une masse quasiment nulle (donc un comportement cinématique proche de celui de la lumière dans les laboratoires) et n'interagit que par la force faible.

Chiralité en chimieModifier

Article détaillé : Chiralité (chimie).

En chimie, un composé chimique est chiral s'il n'est pas superposable à son image dans un miroir. Si une molécule est chirale, elle possède deux formes énantiomères : une lévogyre (« qui tourne à gauche », du latin laevus : gauche) et une dextrogyre (« qui tourne à droite », du latin dexter : droite) qui font tourner un rayonnement polarisé de manière opposée.

Notes et référencesModifier

Voir aussiModifier

Sur les autres projets Wikimedia :

Articles connexesModifier

Lien externeModifier