Ouvrir le menu principal

Wikipédia β

9.10.2016, une date à symétrie centrale
Symétrie centrale plane dans une carte à jouer : sur la carte figure le roi de cœur et son symétrique par rapport au centre de cette dernière.

La symétrie centrale est une transformation géométrique.

Elle se réalise à partir d'un point fixe noté Ω appelé centre de symétrie. Elle transforme tout point M en un point image M' tel que le point Ω soit le milieu du segment [MM'].

En termes de vecteurs, cela se traduit par :

Comme toute symétrie, c'est une involution, c'est-à-dire qu'on retrouve le point ou la figure de départ si on l'applique deux fois. En particulier, c'est une bijection.

Dans le plan euclidien, les symétries centrales sont les rotations d'un demi-tour.

Sommaire

Propriétés de la symétrie centraleModifier

Propriété de conservationModifier

La symétrie centrale est une application affine ; elle conserve :

  • les alignements (les symétriques de trois points alignés sont alignés),
  • le parallélisme (les symétriques de deux droites parallèles sont parallèles).

Elle transforme même toute droite en une droite qui lui est parallèle, puisque c'est une homothétie (de rapport –1).

Lorsque l'espace affine est muni d'une structure euclidienne, c'est même une isométrie affine (un déplacement si la dimension de l'espace est paire et un antidéplacement si elle est impaire) ; elle conserve :

ExemplesModifier

Par rapport à un point Ω,

  • le symétrique de Ω est Ω ;
  • le symétrique d'un segment est un segment ;
  • le symétrique d'un arc de courbe est un arc de même longueur ;
  • la symétrique d'une droite d est une droite parallèle à d ;
  • le symétrique d'un cercle de centre O est le cercle de même rayon et de centre le symétrique de O.

Complexes et symétrie centraleModifier

Dans le plan euclidien, la symétrie de centre Ω est la rotation de centre Ω et d'angle π.

Dans le plan complexe, soit ω l'affixe de Ω et z l'affixe de M

L'affixe z' de M' est

 

Construction du symétrique d'un point M par rapport à un point ΩModifier

À la règle et au compasModifier

  • Placer le point Ω et le point M distinct de Ω.
  • Tracer la droite (ΩM).
  • Tracer le cercle de centre Ω et de rayon ΩM.
  • Les deux points d'intersection entre le cercle et la droite sont le point M d'un côté et le point M' symétrique de M par rapport à Ω de l'autre.

Au compas seulModifier

  • Placer le point Ω et le point M distinct de Ω.
  • Tracer le cercle de centre Ω et de rayon ΩM.
  • Tracer le cercle de centre M et de rayon 2 × ΩΜ.
  • Le point d'intersection entre les deux cercles est le point M' symétrique de M.

Voir aussiModifier