Système à minimum de phase

En traitement du signal et en théorie du contrôle, un système linéaire ne dépendant pas du temps est dit à minimum de phase si ce système et son inverse sont stables et causaux. On parle aussi de filtre à minimum de phase.

Pour un système discret, en supposant que la fonction de transfert est rationnelle, ce système est à minimum de phase si et seulement si tous les pôles et zéros de sont à l'intérieur du disque unité.

Pour un système continu, la condition pour que ce système soit à minimum de phase est que les pôles et zéros de transmission appartiennent au demi-plan gauche du plan complexe.

InterprétationModifier

On considère dans ce qui suit un système discret, bien que l'interprétation se généralise pour un système continu.

Interprétation dans le domaine fréquentielModifier

Un système à minimum de phase a la propriété d'être le système qui, à une réponse en gain fixée, minimise le temps de propagation de groupe sur l'ensemble des fréquences.

Le déphasage à une pulsation   est - à l'ajout d'une constante près - la somme des contributions de chaque zéro de  . Soit   un de ces zéros de module différent de 1, regardons de plus près sa contribution au temps de propagation de groupe. On note

 

  apparaît dans la fonction de transfert par le facteur  , dont la phase est

 
 

En dérivant l'arc tangente, on obtient que   contribue au temps de propagation de groupe par :

 
 


 

Le dénominateur et   restent inchangés par réflexion, c'est-à-dire en remplaçant   par   (les réflexions des zéros de   permettent d'obtenir les autres fonctions de transfert ayant la même réponse en gain). Il y a deux possibilités selon que   se trouve à l'intérieur ou à l'extérieur du disque unité : le choix   permet de minimiser le temps de propagation de groupe.


 
Illustration du calcul ci-dessus. Ce graphique montre la réponse de deux filtres ayant le même gain (à gauche : le diagramme de Nyquist, à droite : la réponse en phase). Le filtre représenté en haut avec   est à minimum de phase, il a la plus petite amplitude pour la réponse en phase.

Interprétation dans le domaine temporelModifier

Un système à minimum de phase répond à une impulsion en concentrant l'énergie près de 0. Pour une réponse en gain fixée, le système à minimum de phase est celui qui minimise :

 

pour n'importe quel   (  est la réponse impulsionnelle).

Autres dénominationsModifier

  • Un système à non minimum de phase est un système causal et stable dont l'inverse est instable. Les systèmes à non minimum de phase retiennent l'attention en théorie du contrôle car le contrôle d'un système en boucle fermé peut poser des problèmes de stabilité.
  • Un système à maximum de phase est un système causal dont les zéros se trouvent en dehors du disque unité. Pour un filtre à réponse impulsionnelle finie, on passe d'un système à minimum de phase à un filtre à maximum de phase par la relation   ou dans le domaine temporel   avec   le degré du système.
  • Un système à phase linéaire est un système dont la réponse en phase est linéaire : le temps de propagation de groupe est constant.

RéférencesModifier