Racine cubique

En mathématiques, la racine cubique d'un nombre réel est l'unique nombre réel dont le cube (c'est-à-dire la puissance 3e) vaut  ; en d'autres termes, . La racine cubique de est notée .

Courbe représentative de la fonction racine cubique sur R.

On peut également parler des racines cubiques d'un nombre complexe.

DéfinitionModifier

De façon générale, on appelle racine cubique d'un nombre (réel ou complexe)   tout nombre   solution de l'équation :

 

Si   est réel, cette équation a dans R une unique solution, qu'on appelle la racine cubique du réel   :  .

Dans C, cette équation a trois solutions distinctes, qui sont les racines cubiques du complexe  . Lorsque ce complexe   est un réel, ces trois solutions sont :  ,   et  , où   est la racine cubique réelle de   et 1, j et j sont les trois racines cubiques de l'unité dans C.

Racine cubique d'un nombre réelModifier

ExemplesModifier

La racine cubique de 8 est 2 car 2×2×2 = 8. La racine cubique tient son nom du cube : la racine cubique est la longueur de l'arête d'un cube dont est donné le volume. On a un volume de 8 et une arête de 2 ; on écrit :

 .

La racine cubique de –27 est –3 car (–3)×(–3)×(–3) = –27.

 .

Fonction racine cubiqueModifier

Sur R, la fonction racine cubique, notée  , est celle qui associe à un nombre réel son unique racine cubique réelle.

Sur l'ensemble des réels strictement positifs, la fonction racine cubique est égale à la fonction puissance un tiers[Note 1] :

 .

PropriétésModifier

Racines cubiques d'un nombre complexeModifier

Tout nombre complexe non nul admet trois racines cubiques complexes distinctes, de somme nulle. Si Z est l'une d'elles, les deux autres sont jZ et j2Z, où

 

sont les trois racines cubiques de l'unité.

Symbole UnicodeModifier

U+221B racine cubique (HTML : ∛)

NoteModifier

  1. Comme toute fonction puissance définie en tant que fonction réelle, la fonction puissance 1/3 n'est définie que sur R+* : pour tout réel y > 0, y1/3 est l'exponentielle de base y du réel 1/3.

Voir aussiModifier

Sur les autres projets Wikimedia :