Polytope dual

En mathématiques, et plus précisément en géométrie, la notion de polytope dual généralise celle de polyèdre dual ; il s'agit d'une construction d'un nouveau polytope, dont les (hyper)faces correspondent aux sommets du premier. Cette construction, utilisant la transformation par polaires réciproques, est également étroitement liée à la notion de convexité.

DéfinitionModifier

Soit   un point de   (identifié à l'espace affine euclidien d'origine le vecteur nul) ; on définit le demi-espace   par  , où <> désigne le produit scalaire ; sa frontière, l'hyperplan   est la polaire de x par rapport à la sphère unité. Soit P un polytope dont les sommets sont les points (non nuls)   de  . Alors le polytope dual   est le sous-ensemble de   défini par l'intersection de tous les demi-espaces  .

Pour un polyèdre P,   est alors aussi un polyèdre, et on a alors les associations suivantes : la face duale   d’un sommet v de P est une face du polyèdre   normale à la droite (Ov). De même, le dual d’une arête e =   est l’arête égale à l’intersection des duaux des 2 sommets. Enfin, le dual d’une face f de P est un sommet.

Soit x un point de l'intérieur relatif d'une face t de P ; on définit l'ensemble   par .

  est alors appelée face duale de t (puisque   est constant pour tout x dans l'intérieur relatif de t).

Plus généralement, si a est une face de b dans le polyèdre P,   est une face de   dans le polyèdre  .

RéférencesModifier

Voir aussiModifier