Ouvrir le menu principal
Page d'aide sur l'homonymie Pour les articles homonymes, voir Borel.

Le paradoxe de Borel (parfois appelé le paradoxe de Borel-Kolmogorov) est un paradoxe de la théorie des probabilités en rapport avec les probabilités conditionnelles et les densités de probabilité.

Supposons que nous ayons deux variables aléatoires, X et Y, de densité de probabilité conjointe pX,Y(x,y). Nous pouvons former la densité conditionnelle de Y sachant X,

pX(x) est la loi marginale appropriée.

En utilisant le théorème du changement de variable, nous pouvons paramétrer la loi conjointe avec les fonctions U= f(X,Y), V = g(X,Y), et pouvons alors former la densité conditionnelle de V sachant U.

Étant donné une condition particulière sur X et la condition équivalente sur U, l’intuition nous suggère que les densités conditionnelles pY|X(y|x) et pV|U(v|u) devraient être identiques. Ce n’est pas le cas en général.

Un exemple concretModifier

Une loi uniformeModifier

Soit la densité de probabilité conjointe

 

La densité marginale de X se calcule

 

Ainsi la densité conditionnelle de Y sachant X est

 

qui est uniforme suivant y.

Nouveau paramétrageModifier

Maintenant, appliquons la transformation suivante :

 

En utilisant le théorème du changement de variable, nous obtenons

 

La distribution marginale se calcule et est égale à

 

Ainsi la densité conditionnelle de V sachant U est

 

qui n’est pas uniforme suivant v.

Le résultat non intuitifModifier

D'après ce qui précède, nous avons

 

La condition équivalente dans le système de coordonnées u-v est U = 1, et la densité conditionnelle de V sachant U = 1 est

 

Paradoxalement, V = Y et X = 0 est identique à U = 1, mais

 

Voir aussiModifier