Convergence en moyenne quadratique

La convergence en moyenne quadratique d'une suite de fonctions est l'existence d'une limite pour la distance entre fonctions définie par l'intégrale du carré de la valeur absolue de leur différence. Cette convergence est donc celle induite par la norme de l'espace L2 des fonctions de carré sommable.

Expression de la distance L2
entre deux fonctions numériques
sur un même espace mesuré.

Définition

modifier

Une suite de fonctions   est dite convergente en moyenne quadratique vers une fonction   si et seulement si la suite d'intégrales   converge vers 0.

Voir aussi

modifier