Algorithme à directions de descente

Un algorithme à directions de descente est un algorithme d'optimisation différentiable (l'optimisation dont il est question ici est une branche des mathématiques), destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des -uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué le long d'une direction de descente, de manière à faire décroître la fonction. Le déplacement le long de cette direction est déterminé par la technique numérique connue sous le nom de recherche linéaire.

Cette approche algorithmique peut être vue comme une technique de globalisation, c'est-à-dire une méthode permettant d'obtenir la convergence des itérés (sous certaines conditions) quel que soit l'itéré initial choisi. Elle s'apparente ainsi aux algorithmes à régions de confiance ; ces dernières améliorent légèrement (mais parfois de manière décisive) leurs résultats de convergence mais sont plus compliquées à mettre en œuvre, ce qui limite parfois leur application.

Les algorithmes à directions de descente s'étendent aux problèmes avec contraintes simples (pourvu que la projection sur l'ensemble admissible soit aisée, peu coûteuse en temps de calcul) ou pour des problèmes avec contraintes fonctionnelles non linéaires, par l'intermédiaire de fonctions de mérite. Elles sont aussi utilisées en optimisation non lisse.

Principes de l'algorithmeModifier

CadreModifier

Le cadre est le suivant. On cherche un point   qui minimise une fonction différentiable

 

définie sur un espace hilbertien  , dont on note   le produit scalaire et   la norme associée. On note   et   la dérivée et le gradient de   en   si bien que

 

ÉnoncéModifier

Les algorithmes à directions de descente cherchent un minimum de   en générant une suite de points   appelés itérés, qui approchent de mieux en mieux un minimiseur   du critère  , si tout va bien. Cette suite est construite en se fondant sur deux constructions :

  • calcul d'une direction de descente  
  • détermination d'un pas  , qui est un nombre réel strictement positif, le long de la direction de descente de telle sorte que le nouvel itéré donne au critère une valeur inférieure à celle qu'il a en l'itéré courant ; le nouvel itéré est de la forme suivante

     

    cette opération de détermination du pas s'appelle la recherche linéaire.

Ces deux opérations seront décrites ci-dessous, mais on peut dès à présent résumer l'algorithme. Il s'agit d'un schéma algorithmique, car beaucoup d'aspects de celui-ci ne sont pas spécifiés avec précision.

Algorithme à directions de descente (schéma) — On se donne un point/itéré initial   et un seuil de tolérance  . Un algorithme à directions de descente définit une suite d'itérés  ,  ,  , jusqu'à ce qu'un test d'arrêt soit satisfait. Il passe de   à   par les étapes suivantes.

  1. Simulation : calcul de   au moins.
  2. Test d'arrêt : si  , arrêt.
  3. Direction : calcul d'une direction de descente  .
  4. Recherche linéaire : déterminer un pas   le long de  .
  5. Nouvel itéré :  

Cet algorithme est extrêmement simple ; ça ne l'empêche pas d'avoir des propriétés de convergence intéressantes, bien au contraire. Cette simplicité permet d'étendre l'algorithme à des contextes variés, aux problèmes d'optimisation avec contraintes en particulier.

À propos du test d'arrêtModifier

En pratique, il faudra prendre   dans le test d'arrêt de l'étape 2 ; la valeur nulle de cette tolérance a été admise uniquement pour simplifier l'expression des résultats de convergence ci-dessous.

Dans les problèmes sans contrainte, il est normal que le test d'arrêt porte sur la petitesse du gradient (  est généralement pris petit). C'est en effet ce que suggère la condition nécessaire d'optimalité du premier ordre  . Comme   n'est jamais exactement égal à  , ce test ne pourra fonctionner que si   est faible en norme pour   voisin de  , ce qui revient pratiquement à supposer que   est de classe  .

Par ailleurs, un tel test d'arrêt suggère qu'un algorithme à directions de descente ne peut pas trouver mieux qu'un point stationnaire de  . C'est en effet souvent le cas, mais ce point faible est rarement rédhibitoire en pratique. On peut noter qu'il existe une version élaborée des méthodes à régions de confiance qui permet de trouver un minimum local, évitant ainsi les points stationnaires qui n'ont pas cette propriété de minimalité locale.

On est parfois tenté d'arrêter l'algorithme si le critère   ne décroît presque plus. Ceci n'est pas sans risque et il vaut mieux ne pas utiliser un tel test d'arrêt, car une faible variation du critère peut se produire loin d'une solution. En effet, au premier ordre,   revient à  , ce qui peut arriver si le pas   est petit (c'est en général très suspect) ou si la direction de descente fait avec l'opposé du gradient un angle proche de 90 degrés, une situation qui se rencontre fréquemment (si l'algorithme est bien conçu, cela traduit un mauvais conditionnement du problème).

Même si le test d'arrêt de l'étape 2 est suggéré par la théorie, on peut s'interroger sur sa pertinence, du point de vue suivant : peut-on préciser dans quelle mesure le fait d'avoir un petit gradient implique que l'itéré est proche d'un point stationnaire de   ? Le cas où   est quadratique strictement convexe est instructif :

 

Minimiser   revient alors à déterminer l'unique solution   du système linéaire  . Par ailleurs, le gradient de   (pour le produit scalaire euclidien) est le résidu du système linéaire :  . Or on sait bien que, si le conditionnement de   est élevé, on peut très bien avoir   petit et une erreur   importante. Le test d'arrêt portant sur la petitesse du gradient doit donc être interprété avec précaution.

Choix d'une direction de descenteModifier

Les algorithmes à directions de descente portent en général le nom de leur direction de descente. Ainsi

Ces directions sont décrites dans l'article «Direction de descente».

Règles de recherche linéaireModifier

Plusieurs règles permettant de déterminer la valeur du paramètre   existent. Elles consistent, pour la plupart, à trouver la valeur qui minimise la fonction-coût

 

Considérant que   est une direction de descente, on obtient  , ce qui permet de déterminer le comportement de q en fonction des valeurs de α. Il convient toutefois d'être prudent :

  • en choisissant α trop grand, on ne parviendra pas à faire décroître les valeurs de q ou au pire d'obtenir un algorithme oscillant ;
  • en choisissant α trop petit, l'algorithme aura une convergence lente.

Règles exactesModifier

Règle d'ArmijoModifier

La règle d'Armijo se base sur le choix d'un paramètre   et détermine une valeur approchée de   par la condition :

 

Le risque de cette méthode est de favoriser les valeurs trop petites, aussi, elle est rarement utilisée seule.

Règle de GoldsteinModifier

Goldstein propose en 1967 une méthode basée sur le choix cette fois-ci de deux paramètres   et détermine les valeurs approchées de   par deux conditions :

 

Règle de WolfeModifier

Wolfe propose en 1969 une méthode basée sur le choix de deux paramètres   et détermine les valeurs approchées de   par deux conditions :

 

Deux valeurs usuelles des paramètres sont   et  .

ConvergenceModifier

AnnexesModifier

Articles connexesModifier

Lien externeModifier

Ouvrages générauxModifier