Ouvrir le menu principal
Page d'aide sur l'homonymie Pour les articles homonymes, voir Probabilité (homonymie).

Les probabilités des résultats obtenus par lancer de dés ont fait l'objet de nombreuses études mathématiques. En effet, ce type de générateur de nombres aléatoires est à la base de nombreux jeux de société.

Application des lois de probabilitéModifier

Article détaillé : Loi de probabilité.
 
Probabilités d'avoir une valeur et de faire moins qu'une valeur avec le lancer d'un ou plusieurs dés

Pour un simple lancer d'un seul dé à 6 faces, qu'on considère équilibré, la probabilité d'obtenir n'importe quelle valeur 1 à 6 est exactement de 1/6. Le tirage suit donc une loi uniforme discrète. Le tirage de n dés suit une loi multinomiale dont les probabilités p1, p2, …, p6 sont toutes égales à 1/6, si le dé n'est pas pipé.

Si on jette deux dés et qu'on additionne les nombres obtenus sur les deux faces supérieures, les tirages ne sont plus distribués de façon uniforme mais suivent une distribution triangulaire :

Somme des dés 2 3 4 5 6 7 8 9 10 11 12
Probabilité 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Le tirage le plus probable est alors 7.

Il y a un certain nombre de combinaisons possibles avec deux dés à 6 faces pour obtenir un certain nombre : (Rappel : le chiffre 6 est le chiffre maximum, car c'est le nombre de faces)

  • 1+1 =2
  • 1+2 et 2+1 =3
  • 1+3; 2+2 et 3+1 =4
  • 1+4; 2+3; 3+2 et 4+1 =5
  • 1+5; 2+4; 3+3; 4+2 et 5+1 =6
  • 1+6; 2+5; 3+4; 4+3; 5+2 et 6+1 =7
  • 2+6; 3+5; 4+4; 5+3 et 6+2 =8
  • 3+6; 4+5; 5+4 et 6+3 =9
  • 4+6; 5+5 et 6+4 =10
  • 5+6 et 6+5 =11
  • 6+6=12

On peut aussi appliquer ceci sous forme de tableau:

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Avec trois dés ou plus, la distribution se rapproche d'une distribution normale avec l'ajout de chaque dé (conséquence du théorème central limite). La distribution de probabilité exacte   pour un nombre   de dés peut être calculée par convolution répétée de la distribution de probabilité d'un dé simple avec elle-même :

Fi(m ) = ∑n F1(n ) Fi-1(m - n ).

La somme variant de 1 à d lorsque les dés ont d faces et que les faces sont numérotées de 1 à d.

Voir aussiModifier

BibliographieModifier

  • (en) Catalin Barboianu, Probability Guide to Gambling. The Mathematics of Dice, Slots, Roulette, Baccarat, Blackjack, Poker, Lottery and Sport Bets, INFAROM Publishing, , 316 p. (ISBN 9738752035, présentation en ligne, lire en ligne).
  • (en) Paul J. Nahin, Digital Dice. Computational Solutions to Practical Probability Problems, Princeton University Press, , 263 p. (ISBN 0691126984, présentation en ligne, lire en ligne).
  • Martine Quinio Benamo, Probabilités et statistique aujourd'hui. Pourquoi faire? Comment faire?, L'Harmattan, , 273 p. (ISBN 2747597997, lire en ligne)
  • Bernard Ycart, Modèles et Algorithmes Markoviens, Springer, , 272 p. (ISBN 3540436960, lire en ligne)
  • Maurice Fréchet et Maurice Halbwachs, Le calcul des probabilités à la portée de tous, Dunod, , 297 p.

Articles connexesModifier