Ouvrir le menu principal

Polyéthylène
Image illustrative de l’article Polyéthylène
Image illustrative de l’article Polyéthylène
Identification
Nom UICPA poly(méthylène)
Synonymes

polyéthène,
homopolymère d'éthylène,
PE

No CAS 9002-88-4
No ECHA 100.121.698
No E E914 (cire de PE oxydée)
SMILES
Apparence solide de forme variable blanc[1]
Propriétés chimiques
Formule brute (C2H4)n
Propriétés physiques
transition vitreuse ~ −110 °C
(transition γ)
fusion 85 à 140 °C[1]
Paramètre de solubilité δ 16,2 MPa1/2[2]
Masse volumique 0,910,96 g·cm-3 [1]
d'auto-inflammation 330 à 410 °C[1]
Point d’éclair 341 °C[1]
Propriétés électroniques
Constante diélectrique 2,3 (1 kHz, 23 °C)[3]
Précautions
Classification du CIRC
Groupe 3 : Inclassable quant à sa cancérogénicité pour l'Homme[4]

Unités du SI et CNTP, sauf indication contraire.

Le polyéthylène (sigle générique PE)[5], ou polyéthène, désigne les polymères d'éthylène. Simples et peu chers à fabriquer, les PE constituent la matière plastique la plus commune, représentant avec 100 millions de tonnes, environ un tiers de l'ensemble des plastiques produits en 2018[6] et la moitié des emballages.

Le PE qui appartient à la famille des polyoléfines est un important polymère de synthèse de la pétrochimie avec le polypropylène (PP), le PVC et le polystyrène (PS). Sa température de transition vitreuse est très basse (voisine de −110 °C) et son point de fusion peut selon les grades atteindre 140 °C, mais sa résistance mécanique fléchit nettement dès 75 à 90 °C. Contrairement au polypropylène, la température d'utilisation ne peut excéder le point d'ébullition de l'eau. Sa nature paraffinique explique sa grande inertie chimique. Il existe différents types de polyéthylènes dont les homopolymères à basse densité (LDPE) et à haute densité (HDPE), et des copolymères (LLDPE, plastomères, par exemple).

ProductionModifier

Son nom vient du fait qu'il est obtenu par polymérisation des monomères d'éthylène (CH2=CH2) en une structure complexe de formule générique -(CH2-CH2)n-.

Le polyéthylène est la seule polyoléfine qui puisse être préparée par voie radicalaire.

Le polyéthylène est surtout issu de la pétrochimie. En juin 2007, la compagnie brésilienne Braskem a annoncé la certification d'un polyéthylène vert, polymérisé à partir d'éthylène issu d'éthanol lui-même obtenu par fermentation de canne à sucre.

ClassificationModifier

Les polyéthylènes peuvent être

  • linéaires ou branchés (ou ramifiés), et dès lors classés selon :
    • leur densité qui dépend du nombre et de la longueur des ramifications présentes sur les chaînes moléculaires
    • leur masse molaire :
      • polyéthylène à masse molaire très basse (ULMWPE ou PE-WAX, ultra low molecular weight polyethylene) ;
      • polyéthylène à masse molaire élevée (HMWPE, high molecular weight polyethylene) ;
      • PE-UHPM, polyéthylène de masse molaire très élevée (UHMWPE, ultra-high-molecular-weight polyethylene ou PE-UHMW selon la norme EN ISO 1043-1) ;
  • réticulés : les polyéthylènes réticulés (PE-R, dits aussi PEX ou XLPE, pour cross-linked polyethylene) sont presque tous faits à partir de polyéthylène à haute densité (HDPE), on les désigne alors :
    • PE-RHD, polyéthylène réticulé à haute densité (HDXLPE, high density cross-linked polyethylene).
Nom Sigle en français Sigle en anglais Abréviation selon la norme EN ISO 1043-1 Synthèse[7] Branchements Masse volumique (g/cm3)
Polyéthylène à très basse densité PE-TBD VLDPE, very low density polyethylene PE-VLD Catalyse de Ziegler-Natta à basse pression (< 10 bar) et par catalyse métallocènes (mPE-TBD)
Polyéthylène à basse densité linéaire PE-BDL LLDPE, linear low-density polyethylene PE-LLD Copolymérisation avec des oléfines par catalyse Ziegler-Natta à basse pression (< 10 bar) Courts
Polyéthylène basse densité PE-BD LDPE, low-density polyethylene PE-LD Polymérisation radicalaire sous très haute pression Longs et courts irrégulièrement distribués 0,910 - 0,925[8]
Polyéthylène moyenne densité PE-MD MDPE, medium-density polyethylene PE-MD Catalyseur Phillips 0,926 - 0,940[9]
Polyéthylène haute densité PE-HD HDPE, high-density polyethylene PE-HD Catalyse Ziegler-Natta et par catalyse métallocène (mPE-HD)

Le polyéthylène basse densité a été inventé en 1933 par les ingénieurs anglais E.W. Fawcett et R.O. Gibson. Le polyéthylène haute densité a été synthétisé en 1953 par le chimiste allemand Karl Ziegler et son équipe. Le polyéthylène à basse densité linéaire a été inventé pour remplacer le PE-BD en 1979.

PropriétésModifier

 
Granulés de copolymère LLDPE.

Le polyéthylène est un polymère thermoplastique, translucide, chimiquement inerte (il est plus résistant aux oxydants forts que le polypropylène), facile à manier et résistant au froid.

Les trois principales familles de PE sont le HDPE (PE haute densité), le LDPE (PE basse densité) et le LLDPE (PE à basse densité linéaire)[10].
Le LDPE est plus ramifié que le HDPE, ce qui signifie que les chaînes s'assemblent moins bien entre elles. Les forces intermoléculaires de type van der Waals sont donc plus faibles. Il en résulte un taux de cristallinité moindre[11], une plus faible densité, une malléabilité et une résistance aux chocs plus élevées. En revanche, le HDPE est plus rigide.

UtilisationModifier

   

 
Polyéthylène LDPE et HDPE mis en forme : film et objets moulés (la boîte est en polypropylène, PP).

Le polyéthylène est un polymère de synthèse très employé. Il compose notamment la moitié des emballages plastiques (films à usage alimentaire, agricole, etc.).

L'utilisation la plus visible du polyéthylène sont les sacs plastiques :

  • Lorsque le sac se froisse facilement sous la main, avec un bruit craquant, un touché « mécanique », et revient plus ou moins spontanément à sa forme d'origine, il s'agit du HDPE (PE haute densité)
  • Lorsque le toucher est plus « gras », que le plastique se froisse sans bruit, se perce facilement avec le doigt, il s'agit du LDPE (PE basse densité).

Les principales applications du HDPE sont des produits rigides : flacons (détergents, cosmétiquesetc.), bouteilles, boîtes type Tupperware, jerricans, réservoirs de carburant d'automobiles, etc.

Les principales applications du LDPE sont des produits souples : sacs, films, sachets, sacs poubelles, ruban adhésif, récipients souples (ketchup, crèmes hydratantesetc.), etc.

Le polyéthylène réticulé (PER) montre une meilleure tenue thermique que le PE. Pour la fabrication de gaines de câbles électriques, la réticulation se fait en général après extrusion.

Le polyéthylène de masse molaire très élevée, tel le Dyneema, est utilisé pour ses hautes performances (un rapport résistance/masse 40 % supérieur à celui des aramides (Kevlar)). On le trouve dans les équipements sportifs (ski, snowboard, surf, cerfs-volants, etc.), le matériel de protection, notamment balistique (gilets pare-balles) ou moto (tenues à haute résistance à l'abrasion), les implants chirurgicaux, les plaques pour remplacer la glace des patinoires, etc. Son coût est très supérieur à celui des autres polyéthylènes.

Le polyéthylène est également un additif alimentaire (cire de polyéthylène oxydée E914).

Remarque : le poly(téréphtalate d'éthylène) souvent désigné sous son acronyme, PET, n'est pas un polyéthylène mais un polyester saturé utilisé pour la fabrication de fibres textiles, de bouteilles pour boissons, d'emballagesetc.

CommerceModifier

En 2014, la France est nettement importatrice de polyéthylène, d'après les douanes françaises. Le prix moyen à la tonne à l'import était de 1 100 €[12].

Impact environnemental et biodégradabilitéModifier

Le polyéthylène est synthétisé à partir de l'éthylène qui est lui-même majoritairement produit à partir du pétrole ou du gaz naturel, même s'il est possible de l'obtenir à partir de ressources renouvelables. Ce plastique représente un enjeu majeur de gestion des déchets non seulement en raison de son abondance mais aussi parce qu'il est considéré comme très stable et quasiment non-biodégradable, il tend donc à s'accumuler dans l'environnement.

Cependant, en laboratoire, il est possible de partiellement biodégrader le PE par l'intermédiaire des bactéries, Enterobacter asburiae YT1 et Bacillus sp. YP1, présentes dans l'intestin de la larve d'une mite alimentaire (Plodia interpunctella)[13] : en incubant des films fins de PE durant 28 jours, des biofilms constitués par ces bactéries viables se sont formés. Ils ont réduit le caractère hydrophobe des films plastiques en les rendant poreux[13]. Des traces de puits et cavités (0,3 à 0,4 μm de profondeur) ont été observées en microscopie électronique à balayage et microscopie à force atomique à la surface de ces films de polyéthylène, et une formation de groupes carbonyle a été vérifiée[13]. Des cultures en suspension des deux souches bactériennes YT1 et YP1 (108 cellules/ml) ont dégradé à hauteur d'environ 6,1 ± 0,3 % et de 10,7 ± 0,2 % des films PE (100 mg), respectivement pour une période d'incubation de 60 jours[13]. Les poids moléculaires des films PE résiduels étaient plus faibles, et 12 sous-produits de dégradation (solubles dans l'eau) ont aussi été détectés. Les auteurs jugent leurs résultats comme prometteurs pour la biodégradation du PE dans l'environnement[13].

Produits de combustionModifier

Sa combustion dégage différents gaz, dont certains toxiques : furanes, acétaldéhyde, hydrocarbures insaturés ou aromatique (benzène), acide acétique ou propanoïque[14], mais aussi monoxyde d'azote, monoxyde de carbone et CO2, considérès comme des polluants atmosphériques[15].

Notes et référencesModifier

  1. a b c d et e POLYETHYLENE, fiche(s) de sécurité du Programme International sur la Sécurité des Substances Chimiques, consultée(s) le 9 mai 2009
  2. (en) James E. Mark, Physical Properties of Polymer Handbook, Springer, , 2e éd., 1076 p. (ISBN 0387690026, lire en ligne), p. 294
  3. (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, , 90e éd., 2804 p., relié (ISBN 978-1-4200-9084-0)
  4. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, « Evaluations Globales de la Cancérogénicité pour l'Homme, Groupe 3 : Inclassables quant à leur cancérogénicité pour l'Homme », sur monographs.iarc.fr, CIRC, (consulté le 17 mai 2010)
  5. Nom et abréviation selon la norme EN ISO 1043-1, Plastiques - Symboles et termes abrégés - Partie 1 : polymères de base et leurs caractéristiques spéciales
  6. PlasticsEurope, « Plastics - the Facts 2018 :: PlasticsEurope », sur www.plasticseurope.org (consulté le 26 mars 2019)
  7. Marc Carrega, « Aide-mémoire - Matières plastiques », coll. « Aide-Mémoire », Dunod/L'Usine nouvelle, 2009, 2e éd., 256 p.
  8. (en) J.G. Speight, Norbert Adolph Lange, Lange's handbook of chemistry, New York, McGraw-Hill, , 16e éd., 1623 p. (ISBN 978-0-07-143220-7, LCCN 84643191), p. 2.807 et 2.762
  9. (en) « Polyethylene », sur plasticmoulding.ca (consulté le 8 juillet 2015)
  10. (en) Charles E. Wilkes, James W. Summers et Charles Anthony Daniels, PVC Handbook, Munich, Hanser Verlag, (ISBN 1-56990-379-4, lire en ligne), p. 14
  11. La cristallinité est plus élevée pour le second (80-90 % contre 50-70 %) car les ramifications, courtes ou longues, y sont moins fréquentes que dans le premier.
  12. « Indicateur des échanges import/export », sur Direction générale des douanes. Indiquer NC8=39012010 (consulté le 7 août 2015)
  13. a b c d et e (en) Jun Yang et al., Evidence of Polyethylene Biodegradation by Bacterial Strains from the Guts of Plastic-Eating Waxworms, Environ. Sci. Technol., 2014, 48 (23), p. 13776–13784, DOI:10.1021/es504038a, mis en ligne le 19 novembre 2014.
  14. « Plastiques, Risque et Analyse ThermIQue - Plyéthylène PE », sur inrs.fr
  15. Salifou Koucka Ouiminga1, Thomas Rogaume, Bila Gérard Segda1, Moussa Sougoti1 et Jean Koulidiati1, « Combustion de granulés de polyéthylène pur et de sachets plastiques à base de polyéthylène : effet de la masse et de la température sur les émissions d’oxydes d’azote et de carbone et l’évolution de l’oxygène », J. Soc. Ouest-Afr. Chim.,‎ (lire en ligne)

AnnexesModifier