Ouvrir le menu principal

Lexique de la géométrie riemannienne

page de liste de Wikipédia

La géométrie riemannienne est un domaine des mathématiques étudiant les propriétés des variétés riemanniennes. Cette page rappelle brièvement les définitions des termes récurrents rencontrés.

Sommaire : Haut - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

AModifier

  • Application conforme : Entre deux variétés riemanniennes, application qui préserve les angles ; de manière équivalente application qui transporte une métrique en une métrique conforme ;
  • Application exponentielle : Application différentiable   définie naturellement pour toute variété riemannienne complète. Si   est un vecteur tangent à la variété en m, la géodésique d'origine m et de vitesse initiale   est donnée par   .

BModifier

CModifier

EModifier

  • Espace homogène : Variété sur laquelle agit transitivement un groupe de Lie.
  • Espace symétrique : Variété riemannienne pour laquelle la symétrie géodésique par rapport à n'importe quel point

est une isométrie globale.

FModifier

GModifier

HModifier

IModifier

  • Identités de Bianchi : Identité remarquable portant sur la courbure de la connexion de Levi-Civita ;
  • Inégalité de Bishop-Gromov : Estimation sur le volume des boules d'une variété riemannienne suivant des estimations sur la courbure de Ricci ;
  • Inégalité isopérimétrique : Toute inégalité donnant une majoration du volume riemannien enfermé par une hypsersurface en fonction du volume de cette dernière ;
  • Involution : Isométrie sur une variété riemannienne fixant un point et dont la différentielle en ce point est -Id ;[réf. nécessaire]
  • Isométrie : Entre deux variétés riemanniennes, application différentiable et bijective envoyant métrique riemannienne sur métrique riemannienne ; ou de manière équivalente, application bijective préservant les distances associées;

LModifier

  • Laplacien : Opérateur différentiel défini sur toute variété riemannienne ;

MModifier

  • Métrique de Carnot-Carathéodory
  • métrique riemannienne : Collection de formes bilinéaires symétriques définies positives définies sur les espaces tangents d'une variété, avec une certaine régularité dépendant du contexte ;
  • Mouvement brownien ou processus de Wiener, est une description mathématique du mouvement aléatoire d'une « grosse » particule ;
  • Métrique d'Einstein : métrique riemannienne pour laquelle la courbure de Ricci est proportionnelle à la métrique.

NModifier

PModifier

QModifier

  • Quasi-isométrie : Applications (pas nécessairement continue) entre variétés riemanniennes ou entre espaces métriques qui ne dilatent pas excessivement les distances.

RModifier

soit un difféomorphisme sur son image ;

  • Revêtement riemannien : Revêtement d'une variété riemannienne muni de la métrique tirée en arrière ;
  • Rigidité de Mostow : sous sa version la plus simple, le théorème de rigidité de Mostow assure qu'à partir de la dimension

3, deux variétés riemanniennes compactes à courbure constante négative qui sont difféomorphes sont aussi isométrique.

SModifier

TModifier

VModifier

Autres lexiques mathématiquesModifier