Formulaire de développements en séries

Ce formulaire de développement en séries recense des développements en séries de fonctions pour les fonctions de référence (pour la plupart, des séries entières, et quelques séries de Laurent). Elles sont données avec indication du domaine de convergence (le rayon de convergence pour les séries entières) dans le champ complexe ou réel. La notation représente la boule ouverte de centrée en et de rayon et est le n-ième nombre de Bernoulli.

BinômesModifier

  •  
  •  

En particulier :

  •  
  •  
  •  
  •   (formule du binôme négatif).
  •  

Fonctions exponentielles et logarithmiquesModifier

Pour tout nombre complexe z et tout réel a > 0 :

  •  
  •  
  •  

Fonctions trigonométriques et trigonométriques réciproquesModifier

  •  
  •  
  •  
  •    est la fonction zêta de Riemann et les   sont les nombres de Bernoulli.
  •  
  •  
  •  
  •   et en particulier, pour  ,  .
  •  
  •  

Fonctions hyperboliques et hyperboliques réciproquesModifier

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Voir aussiModifier