BPP (complexité)

En informatique théorique, plus précisément en théorie de la complexité, la classe BPP (bounded-error probabilistic polynomial time) est la classe de problèmes de décision décidés par une machine de Turing probabiliste en temps polynomial, avec une probabilité d'erreur dans la réponse inférieure à 1/3.

DéfinitionModifier

Première définitionModifier

La classe BPP est l'ensemble des problèmes, ou de façon équivalente des langages, pour lesquels il existe une machine de Turing probabiliste en temps polynomial qui satisfait les conditions d'acceptation suivantes :

  • Si le mot n'est pas dans le langage, la machine le rejette avec une probabilité supérieure à 2/3.
  • Si le mot est dans le langage, la machine l'accepte avec une probabilité supérieure à 2/3.

Autrement dit la machine se trompe avec une probabilité inférieure à 1/3.

Définition formelleModifier

On définit la classe BPP comme l'ensemble des langages   tels qu'il existe un polynôme   et un langage   vérifiants que pour tout mot   :

  •  .
  •  .

Relations avec les autres classesModifier

Temps polynomial déterministe versus probabilisteModifier

On peut utiliser une machine probabiliste pour faire un calcul déterministe, et donc P   BPP. L'autre inclusion est une question ouverte. En terme plus généraux, la question est de savoir si l'aléatoire est utile pour accélérer le calcul ou non. Il y a eu à ce sujet un changement d'avis de la part de la communauté de la complexité : jusqu'aux années 80, la plupart des chercheurs pensaient que BPP était différente de P, puis divers résultats ont bousculé cette croyance. Aujourd'hui une égalité est souvent envisagée[1].

Autres relationsModifier

 
Inclusions de classes de complexité probabilistes

BPP contient aussi les classes probabilistes dont les conditions d'acceptation sont plus fortes ZPP, RP et co-RP.

Avec les notations de la hiérarchie polynomiale, on a   d'après le théorème de Sipser–Gács–Lautemann[2].

Dans le monde des classes de circuits booléens, le théorème d'Adleman donne BPP   P/poly (Adleman 1978).

La variante quantique de BPP est BQP.

Propriétés et théorèmesModifier

  • On peut avoir des machines plus efficaces si nécessaire, autrement dit on peut remplacer 2/3 par   et 1/3 par   (pour tout   petit), en ne changeant pas la classe. Ce renforcement peut être effectué en lançant plusieurs fois la machine de façon indépendante et en faisant un vote. Le calcul utilise les bornes de Chernoff.
  • BPP est close par complémentaire, i.e. BPP = co-BPP.

HistoireModifier

Cette classe a été introduite par J. Gill[3] dans l'article Computational complexity of probabilistic Turing machines, en même temps que les classes RP et ZPP[4].

BibliographieModifier

Lien externeModifier

Notes et référencesModifier

  1. Sylvain Perifel, Complexité algorithmique, Ellipses, , 432 p. (ISBN 9782729886929, lire en ligne), chap. 12.1 (« Dérandomisation ») p. 318.
  2. (en) Sanjeev Arora et Boaz Barak, Computational Complexity : A Modern Approach, Cambridge University Press, (ISBN 0-521-42426-7), chap. 7 section 5.2 BPP is in PH
  3. Complexity Zoo
  4. (en) John Gill, « Computational complexity of probabilistic Turing machines », SIAM Journal on Computing, vol. 6, no 4,‎ , p. 675-695