Ouvrir le menu principal
Un problème de décision a, pour des données quelconques, seulement deux solutions possibles : "oui" ou "non"

En informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée.


Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.

Sommaire

ExempleModifier

L'ensemble des nombres premiers est un exemple classique de problème de décision décidable. Il est en effet possible de savoir si un entier naturel est un nombre premier en vérifiant qu’aucun entier naturel le précédant, hormis  , ne fait partie de ses diviseurs. Bien que l'on connaisse des méthodes beaucoup plus efficaces de test de primalité, l'existence d'une méthode correcte suffit pour établir la décidabilité.

Dans le contexte de la calculabilitéModifier

En théorie de la calculabilité, formuler un problème de décision c'est se poser une question de décidabilité. Il s'agit en fait de rechercher l'existence d'un algorithme résolvant le problème et, s'il existe, de l'expliciter. On dit qu'un problème (de décision) P est décidable si l'ensemble A des éléments qui répondent « oui » à la question posée est récursif. De même, P est dit partiellement décidable, semi-décidable ou prouvable si l'ensemble A est récursivement énumérable. Et dans le cas contraire, où le problème P n'est ni décidable, ni partiellement décidable, il est dit indécidable. Il y a des problèmes fondamentaux qui sont indécidables, c'est le cas du problème de l'arrêt.

Dans le contexte de la théorie de la complexitéModifier

Certains problèmes de décision décidables sont cependant considérés comme non traitables en pratique pour des raisons de trop grande complexité des calculs. La théorie de la complexité des algorithmes donne une hiérarchie des complexités formelles. En particulier, un problème NP-complet est considéré comme tellement difficile qu'il est conjecturé qu'il n'existe pas d'algorithme efficace qui puisse le résoudre.

Voir aussiModifier