Système cristallin

classement des cristaux sur la base de leurs caractéristiques de symétrie

Un système cristallin est un classement des cristaux sur la base de leurs caractéristiques de symétrie, sachant que la priorité donnée à certains critères plutôt qu'à d'autres aboutit à différents systèmes.

La symétrie de la maille conventionnelle permet de classer les cristaux en différentes familles cristallines : quatre dans l'espace bidimensionnel, sept dans l'espace tridimensionnel.

Une classification plus fine regroupe les cristaux en deux types de systèmes, selon que le critère de classification est la symétrie du réseau ou la symétrie morphologique. Historiquement, ces deux systèmes ont été indistinctement appelés système cristallin, ce qui a été à l'origine de la confusion dans la littérature surtout minéralogique.

Classification réticulaire : les systèmes réticulaires

modifier

Lorsqu'on classe les cristaux sur la base de la symétrie de leur réseau, on obtient un ensemble de quatre (espace bidimensionnel) ou sept (espace tridimensionnel) systèmes qui, dans l'ancienne littérature minéralogique francophone (voir surtout les ouvrages de Georges Friedel), étaient appelés « systèmes cristallins ». Le terme officiel choisi par l'Union internationale de cristallographie est systèmes réticulaires (lattice systems en anglais)[a].

Un système réticulaire regroupe tout cristal ayant en commun le groupe ponctuel du réseau. Les tableaux suivants résument les systèmes réticulaires, les groupes ponctuels correspondants étant donnés dans la notation de Hermann-Mauguin.

Les quatre systèmes réticulaires dans l'espace bidimensionnel
symétrie du réseau système réticulaire
2 monoclinique
2mm orthorhombique
4mm tétragonal (quadratique)[b]
6mm hexagonal
Les sept systèmes réticulaires dans l'espace tridimensionnel
symétrie du réseau système réticulaire
1 triclinique
2/m monoclinique
mmm orthorhombique
4/mmm tétragonal (quadratique)[b]
3m rhomboédrique
6/mmm hexagonal
m3m cubique

Classification morphologique : les systèmes cristallins

modifier

La classification des cristaux sur la base de leur symétrie morphologique, ainsi que de la symétrie de leurs propriétés physiques, fut introduite par les cristallographes allemands sous le nom de système cristallin, qui a été retenu comme nom officiel par l'Union internationale de cristallographie.

Un système cristallin regroupe tout cristal caractérisé par la présence d'éléments de symétrie minimaux, auxquels peuvent éventuellement s'en ajouter d'autres jusqu'à obtenir la symétrie d'un réseau. Un cristal qui possède la pleine symétrie de son réseau est dit holoèdre ; un cristal dont la symétrie est inférieure à celle de son réseau est dit mérièdre. Les tableaux suivants résument les systèmes cristallins, où « An » signifie un point (en deux dimensions) ou un axe (en trois dimensions) de rotation de 2π/n et « m » indique une ligne (en deux dimensions) ou plan (en trois dimensions) de réflexion (miroir).

Les quatre systèmes cristallins dans l'espace bidimensionnel
Éléments de symétrie minimaux définissant le système cristallin système cristallin
1xA2 monoclinique
1xA2 et 2xm orthorhombique
1xA4 tétragonal (quadratique)
1xA6 hexagonal
Les sept systèmes cristallins dans l'espace tridimensionnel
Éléments de symétrie minimaux définissant le système cristallin système cristallin
1xA1 triclinique (anortique)
1xA2 ou 1xm monoclinique
3xA2 ou 2xm + 1xA2 à leur intersection orthorhombique
1xA4 tétragonal (quadratique)
1xA3 trigonal
1xA6 hexagonal
4xA3 + 3xA2 cubique

Conflits de terminologie

modifier

Trigonal versus rhomboédrique

modifier

Dans le milieu minéralogique francophone, les deux adjectifs, trigonal et rhomboédrique, sont souvent considérés comme équivalents. Pourtant le terme trigonal qualifie tout cristal ayant comme symétrie rotationnelle d'ordre maximal une rotation de ±120º autour d'un seul axe, indépendamment du type de réseau (hexagonal ou rhomboédrique) : il caractérise donc un système cristallin et non un réseau. En revanche, le terme rhomboédrique qualifie tout cristal ayant un réseau de symétrie 3m : il caractérise cette fois un système réticulaire et non un système cristallin. La cause de cette confusion dans la littérature minéralogique est que primitivement les deux types de système étaient qualifiés de « cristallin ».

Système cristallin versus système réticulaire

modifier

Dans le milieu de la minéralogie francophone il existe une erreur historique de correspondance entre le système réticulaire et le système cristallin. Les minéralogistes français ont concentré leurs efforts sur les aspects réticulaires, arrivant à la classification en systèmes réticulaires, qui à l'époque étaient appelés « systèmes cristallins ». Les minéralogistes allemands se sont concentrés plutôt sur les aspects morphologiques, arrivant à la classification en systèmes cristallins telle qu'elle est connue aujourd'hui. Le fait d'avoir utilisé le même nom pour deux concepts différents fait qu'encore aujourd'hui une confusion demeure, notamment dans le cas des groupes à axe ternaire : un cristal qui a son groupe ponctuel parmi 3, 32, 3m, 3, et 3m appartient au système cristallin trigonal. Mais son réseau peut être soit hexagonal soit rhomboédrique, d'où sa possibilité d'appartenir à deux systèmes réticulaires différents. En revanche, un cristal qui appartient au système réticulaire rhomboédrique est forcément trigonal. Or, les minéralogistes francophones souvent traitent le terme « trigonal » de synonyme anglophone de rhomboédrique, alors que les deux adjectifs expriment des concepts bien différents[1].

Un tel problème a plus spécifiquement une incidence sur la classification du quartz et de la calcite. Ainsi, le quartz α cristallise dans le système cristallin trigonal, à réseau hexagonal, et non dans le système trigonal à réseau rhomboédrique. En revanche, la calcite est en fait trigonale à réseau rhomboédrique[2].

Correspondance entre systèmes et réseaux de Bravais dans l'espace tridimensionnel

modifier

Les 14 réseaux de Bravais sont définis à partir de la maille conventionnelle du réseau. Dans l'espace tridimensionnel, il existe 7 solides primitifs, qui portent les mêmes désignations que les 7 systèmes réticulaires : triclinique, monoclinique, orthorhombique, quadratique, rhomboédrique, hexagonal, cubique.

La correspondance est en revanche seulement partielle dans le cas des systèmes cristallins. Les cristaux du système trigonal peuvent avoir un réseau soit hexagonal soit rhomboédrique. Sur les 25 groupes d'espace que comptent les 5 classes trigonales, seuls 7 d'entre eux ont une maille élémentaire rhomboédrique (ce sont les groupes désignés par la lettre R ) ; les 18 autres groupes d'espace ont une maille élémentaire hexagonale (P ). Comme la maille conventionnelle du réseau rhomboédrique est hexagonale, on utilise souvent un référentiel hexagonal pour décrire les positions atomiques d'un cristal appartenant au système réticulaire rhomboédrique. Pour les cinq autres cas, la correspondance entre systèmes cristallins et systèmes réticulaires est complète.

Le tableau suivant montre les correspondances entre familles cristallines, réseaux de Bravais, systèmes réticulaires et systèmes cristallins dans l'espace tridimensionnel.

Relations entre familles cristallines, réseaux de Bravais, systèmes réticulaires et cristallins dans l'espace tridimensionnel
Famille cristalline Réseaux de Bravais Système réticulaire Système cristallin Classification des groupes ponctuels
Cubique cP, cF, cI Cubique Cubique 23, m3, 432, 43m, m3m
Hexagonale hP Hexagonal Hexagonal 6, 622, 6mm, 6/m, 6/mmm, 6, 62m
Hexagonale hP Hexagonal Trigonal 3, 32, 3m, 3, 3m
Hexagonale hR Rhomboédrique Trigonal 3, 32, 3m, 3, 3m
Tétragonale (quadratique) tP, tI Tétragonal (quadratique) Tétragonal (quadratique) 4, 4, 422, 4mm, 42m, 4/m, 4/mmm
Orthorhombique oP, oS[c], oF, oI Orthorhombique Orthorhombique 222, mm2, mmm
Monoclinique mP, mS[c] Monoclinique Monoclinique 2, m, 2/m
Triclinique aP Triclinique Triclinique 1, 1

Les systèmes cristallins et leurs propriétés

modifier
Système
groupes d'espace
Classe de symétrie Formes cristallines Symétries Symboles
d'Hermann-
Mauguin
axes 2π/ plans centre
2 3 4 6
triclinique
1-2
hémiédrie formes à une seule face - - - - - - 1
holoédrie pinacoïde - - - - - oui 1
monoclinique
3-15
hémiédrie axiale dôme, ou dièdre 1 - - - - - 2
antihémiédrie dôme - - - - 1 - m
holoédrie prisme 1 - - - 1 oui 2/m
ortho-
rhombique
16-74
hémiédrie holoaxe tétraèdre orthorhombique 3 - - - - - 222
antihémiédrie pyramide orthorhombique 1 - - - 2 - mm2
holoédrie octaèdre orthorhombique 3 - - - 3 oui 2/m2/m2/m
quadratique ou
tétragonal
75-142
tétartoédrie énantiomorphe pyramide tétragonale - - 1 - - - 4
tétartoédrie sphénoédrique disphénoèdre tétragonal 1 - - - - - 4
parahémiédrie dipyramide tétragonale - - 1 - 1 oui 4/m
hémiédrie holoaxe trapézoèdre tétragonal 4 - 1 - - - 422
antihémiédrie pyramide ditétragonale - - 1 - 4 - 4mm
hémiédrie sphénoédrique scalénoèdre tétragonal 3 - - - 2 - 42m
holoédrie dipyramide ditétragonale 4 - 1 - 5 oui 4/m2/m2/m
trigonal
143-167
ogdoédrie hexagonale pyramide trigonale - 1 - - - - 3
tétartoédrie rhomboédrique
paratétartoédrie (hexagonale) rhomboèdre - 1 - - - oui 3
parahémiédrie (rhomboédrique)
tétartoédrie (hexagonale) trapézoèdre trigonal 3 1 - - - - 32
hémiédrie holoaxe (rhomboédrique)
antitétardoédrie (hexagonale) pyramide ditrigonale - 1 - - 3 - 3m
antihémiédrie (rhomboédrique)
parahémiédrie trigonal
(réseau hexagonal)
scalénoèdre - rhomboèdre 3 1 - - 3 oui 3 2/m
holoédrie
(réseau rhomboédrique)
hexagonal
168-194
tétartoédrie énantiomorphe pyramide hexagonale - - - 1 - - 6
tétartoédrie triangulaire dipyramide triangulaire - 1 - - 1 - 6[d]
parahémiédrie dipyramide hexagonale - - - 1 1 oui 6/m
hémiédrie holoaxe trapézoèdre hexagonal 6 - - 1 - - 622
antihémiédrie pyramide dihexagonale
pyramide hexagonale
- - - 1 6 - 6mm
hémiédrie triangulaire dipyramide/prisme ditrigonal 3 1 - - 4 - 6m2
holoédrie dipyramide dihexagonale 6 - - 1 7 oui 6/m2/m2/m
cubique
ou
isométrique
195-230
tétartoédrie pentagonotritétraèdre 3 4 - - - - 23
parahémiédrie diploèdre - dodécaèdre 3 4 - - 3 oui 2/m 3
hémiédrie holoaxe pentagonotrioctaèdre 6 4 3 - - - 432
antihémiédrie de l'hexatétraèdre au tétraèdre 3 4 - - 6 - 4 3m
holoédrie de l'hexooctaèdre au cube 6 4 3 - 9 oui 4/m32/m

Termes utilisés en cristallographie

modifier
  • Un diploèdre est une combinaison de deux rhomboèdres.
  • Ditétragonale qualifie une forme construite sur une base à 8 côtés.
  • Ditrigonale qualifie une forme construite sur une base à 6 côtés.
  • Un dodécaèdre est un cristal à douze faces ; les faces sont des pentagones dans le cas d'un dodécaèdre régulier.
  • Énantiomorphe qualifie un cristal qui comporte des éléments appariés de même forme, mais symétriquement inversés.
  • L'holoédrie est la propriété d'un cristal dont la symétrie est exactement celle du réseau périodique qui lui correspond.
  • La mériédrie est la propriété d'un cristal dont la symétrie est inférieure à celle du réseau périodique qui lui correspond. Elle est divisée en :
    • hémiédrie, ou mériédrie d'ordre 2,
    • tétartoédrie, ou mériédrie d'ordre 4,
    • ogdoédrie, ou mériédrie d'ordre 8.
  • Holoaxe qualifie un cristal qui possède tous ses axes de symétrie.
  • Un pinacoïde est une forme « ouverte » délimitée par 2 faces parallèles.
  • Un rhomboèdre est un parallélépipède dont les faces sont des losanges.
  • Un scalénoèdre est un polyèdre irrégulier à faces scalènes, c'est-à-dire qui forment des triangles dont les trois côtés sont inégaux.
  • Un sphénoèdre est un polyèdre à faces aiguës se croisant deux à deux en coins.
  • tétragonale qualifie une forme construite sur une base à 4 côtés.
  • Un trapézoèdre est un solide dont les faces sont des trapèzes.
  • Trigonale qualifie une forme construite sur une base à 3 côtés.

Notes et références

modifier
  1. Dans les Tables internationales de cristallographie publiées avant 2002, les systèmes réticulaires étaient appelés « systèmes de Bravais ».
  2. a et b L’adjectif d'origine latine quadratique est plus utilisé en français que l'adjectif d'origine grecque tétragonal. Toutefois, ce dernier est l'adjectif standard utilisé dans les Tables internationales de cristallographie. Par ailleurs, les symboles des réseaux de Bravais dans cette famille utilisent la première lettre t de l'adjectif tétragonal.
  3. a et b «S » signifie une seule paire de faces centrées.
  4. L'opération 6 est équivalente à 3/m ; toutefois, la notation 3/m reviendrait à placer le groupe correspondant dans le système cristallin trigonal, avec deux réseaux possibles, alors que ce groupe n'est compatible qu'avec le réseau hexagonal. Pour cette raison, seule la notation 6 est acceptée.

Références

modifier

Voir aussi

modifier

Articles connexes

modifier

Liens externes

modifier
                               
Classement des cristaux tridimensionnels
Famille cristalline Triclinique Monoclinique Orthorhombique Tétragonale Hexagonale Cubique
Système cristallin Triclinique     Monoclinique     Orthorhombique     Tétragonal     Trigonal     Hexagonal     Cubique    
Système réticulaire Triclinique     Monoclinique     Orthorhombique     Tétragonal     Rhomboédrique     Hexagonal     Cubique    
Paramètres cristallins abc
αβγ ≠ 90°
abc
α = γ = 90° ≠ β
abc
α = β = γ = 90°
a = bc
α = β = γ = 90°
a = b = c
α = β = γ ≠ 90°
a = b
α = β = 90° ; γ = 120°
a = b = c
α = β = γ = 90°