Ouvrir le menu principal
Distance de Manhattan (chemins rouge, jaune et bleu) contre distance euclidienne en vert.

La distance de Manhattan[1],[2], appelée aussi taxi-distance[3], est la distance entre deux points parcourue par un taxi lorsqu'il se déplace dans une ville où les rues sont agencées selon un réseau ou quadrillage. Un taxi-chemin[3] est le trajet fait par un taxi lorsqu'il se déplace d'un nœud du réseau à un autre en utilisant les déplacements horizontaux et verticaux du réseau.

DéfinitionModifier

Entre deux points A et B, de coordonnées respectives   et  , la distance de Manhattan est définie par :

 

Autrement dit, c'est la distance associée à la norme 1.

PropriétésModifier

On montre que si l'on oriente le réseau et que l'on définit des déplacements élémentaires positifs et négatifs, la distance de Manhattan est indépendante du chemin parcouru à l'intérieur d'un réseau fini. Ainsi, sur l'image de droite, la distance entre les deux points noirs, qu'on les joigne par les chemins rouge, bleu ou jaune, est identique (et égale à 12).

RéférencesModifier

Sur les autres projets Wikimedia :