Ouvrir le menu principal

Soustraction

opération mathématique

La soustraction est l'une des opérations basiques de l'arithmétique. La soustraction combine deux ou plusieurs grandeurs du même type, appelées opérandes, pour donner un seul nombre, appelé la différence.

Soustraire signifie diminuer en comptant.
Soustraire b de a (calculer a − b) c'est trouver le nombre qui complèterait b pour donner a, c'est-à-dire le nombre d tel que b + d = a

Le signe de soustraction est le symbole « − ». Par exemple : on lit 3 − 2 = 1 comme « trois moins deux font un ».

Les noms des différents termes de la formule

cb = a

sont diminuende (c) − diminuteur (b) = différence (a).

Définition généraleModifier

Soit (G, +) un groupe additif[Quoi ?]. On définit une nouvelle loi de composition interne dans G, appelée « soustraction » et notée «  » par : . La soustraction est anticommutative.

Le défaut de cette définition est d'utiliser le même signe, à savoir −,

  1. pour l'opposé   de   et
  2. pour l'opération binaire  

Cas particulier des nombresModifier

Ici nous travaillons dans (ℤ, +) des nombres entiers relatifs.

Formellement, la soustraction est une loi de composition interne sur un ensemble, notée − à condition toutefois que la soustraction soit toujours définie (ce qui n'est, par exemple, pas le cas dans l'ensemble ℕ des entiers naturels). Cette loi de composition interne (quand elle existe) n'est cependant pas très intéressante[Quoi ?] car

  • elle n'est pas commutative. En effet a − b et b − a sont en général différents
  • elle n'est pas associative. En effet (a − b) − c et a − (b − c) sont en général différents
  • elle ne possède pas d'élément neutre. En effet, le seul élément neutre possible serait 0 et l'on a
a − 0 = a, mais en général
0 − a est différent de a.

C'est la raison pour laquelle on[Qui ?] préfère considérer une soustraction comme l'ajout (somme) de l'opposé, à condition évidemment que cet opposé existe (ce n'est pas toujours le cas dans ℕ).

L'opposé de a est le nombre noté (−a) qui, ajouté à a, donne 0 : a + (−a) = 0
a − b peut alors s'écrire a + (−b)

Parfois les mathématiciens notent cette opération (qu'ils appellent monus) par le signe ∸ (un moins surmonté d'un point[1]).

Notes et référencesModifier

  1. Philip Wadler, « Programming Language Foundations in Agda », en ligne, U. d'Édimbourg,‎ (lire en ligne)

Voir aussiModifier

Sur les autres projets Wikimedia :