Quadrivitesse

En physique, et en particulier en relativité restreinte et en relativité générale, la quadrivitesse[N 1] d'un objet est un quadrivecteur généralisant le vecteur vitesse en mécanique classique.

IntroductionModifier

La quadrivitesse est une des notions que le mathématicien et physicien allemand Hermann Minkowski (-) a introduites[3],[N 2] dans le cadre de sa reformulation géométrique de la relativité restreinte d'Albert Einstein (-)[4].

La quadrivitesse est ainsi désignée car elle est le quadrivecteur qui généralise la notion de vitesse de la mécanique newtonienne[1],[5].

Plus précisément, la quatrivitesse est un quadrivecteur :

En relativité restreinte, la quadrivitesse est définie comme la dérivée première[10] de la quadriposition par rapport au temps propre[1],[11],[12]. Une telle définition n'est pas valide en relativité générale car, dans ce cadre, le quadruplet de coordonnées permettant de repérer un événement ne forme pas un quadrivecteur[13].

La notion de quadrivitesse n'existe pas pour une particule de masse nulle car le temps propre d'une telle particule n'est pas défini[14].

Mécanique classiqueModifier

En mécanique classique, les événements sont décrits par leur position à chaque instant. La trajectoire d'un objet dans l'espace tri-dimensionnel est paramétrée par le temps. La vitesse classique est le taux de variation des coordonnées d'espace par rapport au temps et est tangente à sa trajectoire.

La trajectoire d'un objet dans un espace tridimensionnel est déterminée par une fonction vectorielle à trois composantes, , où chacune des composantes est fonction d'un temps absolu t:

 

  dénote les trois coordonnées spatiales de l'objet au temps t.

Les composantes de la vitesse classique   au point p sont:

 

où les dérivées sont prises au point p. En d'autres termes, elle est la différence entre deux positions   divisée par l'intervalle de temps les séparant  .

Théorie de la relativitéModifier

En théorie de la relativité, la trajectoire d'un objet dans l'espace-temps par rapport à un référentiel donné est définie par une fonction vectorielle à quatre composantes  , chacune d'entre elles dépendant d'un paramètre  , appelé temps propre de l'objet.

 

Quadrivitesse en relativité restreinteModifier

Définition de la quadrivitesseModifier

La quadrivitesse d'un objet est définie comme la tangente de sa ligne d'univers. Ainsi, un objet décrit par la ligne d'univers   aura une quadrivitesse définie comme :

 

Composantes de la quadri-vitesse en relativité restreinteModifier

De la dilatation du temps en relativité restreinte, on sait que    est le facteur de Lorentz, défini comme   et u est la norme de la vitesse vectorielle classique   supposée constante dans le temps :  .

La relation entre la coordonnée temporelle   et le temps t est donnée par

 

En dérivant par rapport au temps propre  , on trouve[15]

 

En utilisant règle de dérivation en chaîne, pour  1, 2, 3, on trouve

 

où nous avons utilisé la définition de la vitesse classique

 

Ainsi, nous trouvons[16], pour la quadrivitesse  :

 

Vitesse propreModifier

Les trois composantes spatiales de la quadrivitesse définissent la vitesse propre d'un objet,  , soit le taux de variation des coordonnées d'espace par rapport au temps propre.

En relativité restreinte, on a  .

NormeModifier

La quadrivitesse étant un quadrivecteur, sa norme est un quadriscalaire, et donc invariante peu importe le choix de référentiel. Dans tous les référentiels, autant en relativité restreinte qu'en relativité générale, la pseudo-norme de la quadrivitesse est

 

Ainsi, la pseudo-norme de la quadrivitesse est toujours égale à la vitesse de la lumière. On peut donc considérer n'importe quel objet massif comme se déplaçant dans l'espace-temps à la vitesse de la lumière.

Cas d'un corps de masse nulleModifier

Une particule de masse nulle est dotée d'une vitesse (classique) égale à la vitesse de la lumière :   Dans ce cas la pseudo-norme de   est égale à  , constante indépendante du référentiel, c'est donc un quadrivecteur : les égalités établies pour un corps massif n'ont pas besoin de l'être pour un corps de masse nulle, et d'ailleurs ne le peuvent pas, le temps propre de ce corps étant nul ( ).

De manière générale, l'égalité   montre que tout paramètre   peut être choisi pour paramétrer la trajectoire du corps car la « vitesse »   ainsi obtenue a une pseudo-norme constante (nulle), et est donc un quadrivecteur :  .

Quadrivitesse en relativité généraleModifier

Notes et référencesModifier

NotesModifier

  1. La quadrivitesse[1],[2] est aussi connue comme le quadrivecteur vitesse[2] et la 4-vitesse[2].
  2. Les notions de ligne d'univers, de quadrivitesse et de quadriaccélération sont dues à Minskowski chez qui elles apparaissent pour la première fois dans une publication de [3]. Il a été noté que si, dès , un vecteur quadridimensionnel — qui n'est autre que la quadivitesse — apparaît chez Henri Poincaré (-), celui-ci ne fait pas explicitement référence à la notion de ligne d'univers[3].

RéférencesModifier

  1. a b c d et e Taillet, Febvre et Villain 2013, s.v.quadrivitesse, p. 564, col. 1.
  2. a b c et d Rougé 2008, § 4.3.2, p. 55.
  3. a b et c Gourgoulhon 2010, p. 39, n. historique.
  4. Taillet, Febvre et Villain 2013, s.v.Minkowski (formalisme de), p. 439.
  5. Clément 2017, chap. 2, § 1.3, p. 22.
  6. a et b Hobson, Efstathiou et Lasenby 2009, § 5.6, p. 114.
  7. a et b Penrose 2007, § 18.7, p. 422.
  8. a et b Semay et Silvestre-Brac 2016, § 8.5, p. 150.
  9. Taillet, Febvre et Villain 2013, s.v.genre, p. 312, col. 1.
  10. Hakim 2001, p. 89-90.
  11. Fabre, Antoine et Treps 2015, § 7.3.5, p. 85.
  12. Semay et Silvestre-Brac 2016, § 8.5, p. 154.
  13. Taillet, Febvre et Villain 2013, s.v.quadrivecteur position, p. 564, col. 1.
  14. Taillet, Febvre et Villain 2013, s.v.quadrivitesse, p. 564, col. 2.
  15. Ce résultat s'obtient aussi en considérant l'intervalle d'espace-temps  
  16. James H. Smith, Introduction à la relativité, Paris, InterÉditions, , 317 p. (ISBN 2-225-82985-3)

Voir aussiModifier

BibliographieModifier

Manuels d'enseignement supérieurModifier

Dictionnaires et encyclopériesModifier

Articles connexesModifier

Liens externesModifier