Indiscernables

En logique mathématique, les indiscernables sont des objets qui ne peuvent être distingués par aucune propriété ou relation définies par une formule. D'ordinaire, seules les formules du calcul des prédicats du premier ordre sont prises en considération.

ExemplesModifier

Si a, b et c sont distincts et {a, b, c} est un « ensemble d'indiscernables », pour chaque formule binaire φ, on doit alors avoir

 

Historiquement, le principe d'identité des indiscernables est une des lois de la pensée (en) de Gottfried Wilhelm Leibniz.

GénéralisationsModifier

Dans certains contextes, on considère la notion plus générale d'« ordre des indiscernables » et le terme « séquence des indiscernables » se réfère souvent implicitement à cette notion plus faible. Dans notre exemple de formules binaires, dire que le triplet (a, b, c) d'éléments distincts est une séquence d'indiscernables implique que

 

ApplicationsModifier

Les ordres d'indiscernables figurent en bonne place dans la théorie du cardinal de Ramsey, du cardinal d'Erdős (en) et du zéro dièse (en).

Articles connexesModifier

BibliographieModifier

Source de la traductionModifier