Fichier:Quantum ideal gas pressure 3d.svg

Fichier d’origine(Fichier SVG, nominalement de 270 × 207 pixels, taille : 19 kio)

Ce fichier et sa description proviennent de Wikimedia Commons.

Description

Description
English: Pressure of classical ideal gas and quantum ideal gases (Fermi gas, Bose gas) as a function of temperature, for a fixed density of particles. This is for the case of non-relativistic (massive, slow) particles in three dimensions.
Русский: Давление классического и квантовых газов (Ферми и Бозе) в зависимости от температуры.

A few features can be seen:

  • The classical gas has P = (Nk/V) T with a slope of Nk/V. As temperature increase, the Fermi and Bose gases approach the ideal gas line, gradually.
  • The Fermi gas is always higher pressure, due to Pauli repulsion; the Bose gas is always lower pressure, due to boson attraction.
  • Even at 0 temperature, the Fermi gas maintains a nonzero pressure, known as degeneracy pressure or Fermi pressure.
  • The * marker indicates the upper temperature of Bose condensation. Moving below this temperature, the pressure drops rapidly as more and more particles are absorbed into the condensed phase.

The figure has been scaled in a way that the particle degeneracy factor, density, mass, etc. are all factored out and irrelevant.

See also Quantum ideal gas entropy 3d.svg and Quantum ideal gas chemical potential 3d.svg.
Date
Source Travail personnel
Auteur Nanite
Autres versions
SVG information
InfoField
 
Le code de ce fichier SVG est valide.
 
Cette représentation graphique a été créée avec Matplotlib
Code source
InfoField

Python code

#!/usr/bin/env python3

import numpy as np
from matplotlib import pyplot as plt
import mpmath
import sys

def fixpoly(s,x):
    # The mpmath polylog sometimes returns a tiny spurious imaginary part, and
    # it throws exceptions for weird cases. Clean this up.
    try:
        return np.real(mpmath.fp.polylog(s,x))
    except (OverflowError, ValueError):
        return np.nan
polylog = np.vectorize(fixpoly, otypes=[float])

# assumed density of states G(E) = V * g_0 * (E - E_0) ^ (alpha - 1) / Gamma(alpha)
# as appropriate for 3D, nonrelativistic, massive particles.
# The prefactor g_0 includes things like spin degeneracy, mass, planck constant, factors of pi, etc.
# V is volume of the system (where applicable - for particles in harmonic well,
# just make sure V*g_0 is the right value).
# We will only plot things that are independent of V and g_0, and we assume E_0 = 0.

# The key parameter in this density of states is alpha.
# for massive particle in a box, alpha = dimensionality/2
# for particle in a harmonic well, alpha = dimensionality
# for hyperrelativistic particles in a box, alpha = dimensionality
if len(sys.argv) > 1:
    # allow massive-particle-in-box dimensionality to be provided as command line arg
    alpha = float(sys.argv[1]) / 2
else:
    # default to 3D massive case:
    alpha = 1.5

# Both Fermi gas and Bose gas are easily calculated in grand canonical ensemble.
# Fermi gas has grand potential given by:
#   Omega = - V * g_0 * (kT)^(alpha + 1) * fdint(alpha, mu/kT)
# where fdint(s, t) is the complete fermi-dirac integral,
#   fdint(s, t) = -polylog(s + 1, -exp(t))
# Bose gas has grand potential:
#   Omega = - V * g_0 * (kT)^(alpha + 1) * beint(alpha, mu/kT)
# (only valid for mu <= 0) where beint(s, t) is
#   beint(s, t) = +polylog(s + 1, +exp(t))
# The classical ideal gas is in-between these, with:
#   Omega = - V * g_0 * (kT)^(alpha + 1) * exp(mu/kT)

# Quantities:
# Pressure        P = -d(Omega)/d(V) = -Omega/V
# Particle number N = -d(Omega)/d(mu)
# Entropy         S = -d(Omega)/d(T)
# Note that:
#    d/dt polylog(s, exp(t)) = polylog(s-1, exp(t))
#
# So these derivatives are easy to compute, e.g., for Fermi:
#   N = -V * g_0 * (kT)^(alpha)  * fdint(alpha - 1 , mu/kT)
#   S = k * N * ( (alpha + 1) * fdint(alpha, mu/kT) / fdint(alpha-1, mu/kT) - mu/kT )
#  ( .. likewise substituting beint or exp for the bose/classical cases .. )
#
# Unfortunately, there is no analytic formula for mu in terms of N, only the other way.
# This is unfortunate since we want to plot temperature-dependence of a system
# with fixed N and fixed V.
# However we can see that both P and N are functions of kT and mu/kT. So, we can
# sweep the value of mu/kT, and then at each point, choose T such that N has the
# desired value.

# To nondimensionalize, we will use a characteristic temperature scale T' based on
# the fixed number N', using the classical case for mu=0:
#    g_0 (kT')^(alpha) = N'/V
# Roughly speaking, this is the temperature at which the thermal de broglie
# wavelength is comparable to the distance between identical particles.
# Likewise, a characteristic pressure to match this temperature and density:
#    P' = N' k T' / V
#       = g_0 (kT')^(alpha + 1)
# With T' and P' in hand, we can rescale all our formulas to be independent of
# g_0, N', and volume, and also do our mu-scanning trick.
# e.g., in the fermi case we get:
#    (T/T')^(alpha) = 1/fdint(alpha - 1, mu/kT)
#    P/P' = (T/T')^(alpha + 1) * fdint(alpha, mu/kT)

# Variables used below:
# z = exp(mu/kT)
# T refers to T/T', where T' defined above.
# P refers to P/P', where P' defined above.
# S refers to S/(N.k)
# mu refers to mu/(kT')

# Pressure vs temperature graph
fig1 = plt.figure()
fig1.set_size_inches(3,2.3)
ax1 = plt.axes((0.09, 0.17, 0.90, 0.82))

# Entropy vs temperature graph
fig2 = plt.figure()
fig2.set_size_inches(3,2.3)
ax2 = plt.axes((0.18, 0.17, 0.81, 0.82))

# Chemical potential vs temperature graph
fig3 = plt.figure()
fig3.set_size_inches(3,2.3)
ax3 = plt.axes((0.15, 0.17, 0.84, 0.82))

# Fermi gas
color_fermi = '#1f77b4'
T_fermi = mpmath.fp.gamma(alpha+1) ** (1./alpha)
P_fermi = T_fermi / (alpha+1)
# sweep z; make the last point to be basically T=0
z = np.exp(np.linspace(-2, 20, 201))
z[-1] = 1e100
T = (-polylog(alpha, -z)) ** (-1./alpha)
P = (T)**(alpha + 1) * -polylog(alpha + 1, -z)
S = (alpha+1) * polylog(alpha + 1, -z)/polylog(alpha, -z) - np.log(z)
mu = np.log(z) * T
# extend traces to exactly T=0
T = np.concatenate((T, [0.]))
P = np.concatenate((P, [P_fermi]))
S = np.concatenate((S, [0.]))
mu = np.concatenate((mu, [T_fermi]))

ax1.plot(T,P, label="Fermi", color=color_fermi)
ax2.plot(T,S, label="Fermi", color=color_fermi)
ax3.plot(T,mu, label="Fermi", color=color_fermi)

# Indicate fermi temperature
P_at_T_fermi = np.interp(T_fermi, T[::-1], P[::-1])
S_at_T_fermi = np.interp(T_fermi, T[::-1], S[::-1])
mu_at_T_fermi = np.interp(T_fermi, T[::-1], mu[::-1])
ax1.plot([T_fermi, T_fermi], [P_at_T_fermi, -100 ], color=color_fermi, lw=1, ls=(0, (1,5)))
ax2.plot([T_fermi, T_fermi], [S_at_T_fermi, -100 ], color=color_fermi, lw=1, ls=(0, (1,5)))
ax3.plot([T_fermi, T_fermi], [mu_at_T_fermi, -100 ], color=color_fermi, lw=1, ls=(0, (1,5)))


# Ideal gas -- this is just a straight line T=P but for consistency, calculate
# it similarly to the bose and fermi cases.
color_classical = '#ff7f0e'
z = np.exp(np.linspace(-2, 20, 200))
T = (z) ** (-1./alpha)
P = (T)**(alpha + 1) * z
S = (alpha+1) - np.log(z)
mu = np.log(z) * T
# extend traces to exactly T=0
T = np.concatenate((T, [0.]))
P = np.concatenate((P, [0.]))
S = np.concatenate((S, [-np.inf]))
mu = np.concatenate((mu, [0.]))

ax1.plot(T,P, label="classical", color=color_classical)
ax2.plot(T,S, label="classical", color=color_classical)
ax3.plot(T,mu, label="classical", color=color_classical)


# Bose gas
color_bose = '#2ca02c'
# Approach mu=0 from below, making sure to include the last floating point
# number smaller than 1.
z = np.concatenate((np.linspace(0.01, 0.99, 99), [0.999, 0.9999, 1 - 1e-16]))
#z = 1 - np.exp(np.linspace(-0.1, -34, 200))
#z = np.exp(np.linspace(-2, -1e-15, 100))
T = (polylog(alpha, z)) ** (-1./alpha)
P = (T)**(alpha + 1) * polylog(alpha + 1, z)
S = (alpha+1) * polylog(alpha + 1, z)/polylog(alpha, z) - np.log(z)
mu = np.log(z) * T
if alpha > 1:
    # In >2 dimensions, the bose gas starts condensing at nonzero temperature,
    # right at the point when mu=0.
    Tcrit = (polylog(alpha, 1)) ** (-1./alpha)
    Pcrit = (Tcrit)**(alpha + 1) * polylog(alpha + 1, 1)
    Scrit = (alpha+1) * polylog(alpha + 1, 1)/polylog(alpha, 1)
    # What about T < Tcrit?
    # Basically now mu is pinned to 0. It cannot go any higher because that would
    # mean infinite particles in every state with energy below mu.
    # Instead as temperature lowers, mu stays at 0 and the particle number in the
    # continuum of states with energy above mu will drop accordingly.
    # The continuum is called the 'noncondensed phase'; the particles that
    # have disappeared have all necessarily gone into some lowest-energy state
    # that is infinitesimally above mu, the 'condensed phase'.
    # So, let's set mu=0, and drop our constraint on N, and calculate the pressure
    # from the continuum phase just as before. (the condensed phase contributes
    # no pressure, in macroscopic ideal gas).
    T2 = np.linspace(Tcrit, 0, 101)
    P2 = T2 ** (alpha + 1) * polylog(alpha + 1, 1)
    # In the case of entropy "S/Nk", we have to be careful since now the total N' is
    # distinct from our continuum N (excited).
    S2 = T2 ** alpha * (alpha+1) * polylog(alpha + 1, 1)
    mu2 = 0*T2

    # concatenate to existing traces
    T = np.concatenate((T, T2))
    P = np.concatenate((P, P2))
    S = np.concatenate((S, S2))
    mu = np.concatenate((mu, mu2))

    # Mark the critical temperature with a *
    ax1.plot([Tcrit],[P2[0]], '*', color='k', ms=12, mew=0, alpha=0.6, zorder=2.5)
    ax2.plot([Tcrit],[S2[0]], '*', color='k', ms=12, mew=0, alpha=0.6, zorder=2.5)
    ax3.plot([Tcrit],[0], '*', color='k', ms=12, mew=0, alpha=0.6, zorder=2.5)

    ax1.plot([Tcrit, Tcrit], [P2[0], -100 ], color=color_bose, lw=1, ls=(0, (4,2)))
    ax2.plot([Tcrit, Tcrit], [S2[0], -100 ], color=color_bose, lw=1, ls=(0, (4,2)))
    ax3.plot([Tcrit, Tcrit], [0, -100 ], color=color_bose, lw=1, ls=(0, (4,2)))

else:
    # extend traces to 0
    T = np.concatenate((T, [0.]))
    P = np.concatenate((P, [0.]))
    S = np.concatenate((S, [0.]))
    mu = np.concatenate((mu, [0.]))

ax1.plot(T,P, label="Bose", color=color_bose)
ax2.plot(T,S, label="Bose", color=color_bose)
ax3.plot(T,mu, label="Bose", color=color_bose)


# format temperature axis nicely
for ax in [ax1, ax2, ax3]:
    ax.set_xlim(0,1.8)
    ax.set_xlabel('temperature', labelpad=0)
    tl = []
    tl.append((0, "0", 'k'))
    if alpha > 1:
        tl.append((Tcrit, r"$T_{\rm B}$", color_bose))
    tl.append((T_fermi, r"$T_{\rm F}$", color_fermi))
    ticks, labels, colors = zip(*tl)
    ax.set_xticks(ticks)
    ax.set_xticklabels(labels)
    for label,color in zip(ax.xaxis.get_ticklabels(), colors):
        label.set_color(color)

ax1.set_ylim(0,1.8)
ax1.set_yticks([0])
ax1.set_ylabel('pressure', labelpad=-5)
ax1.legend(loc='lower right')
fig1.savefig('quantum ideal gas pressure %gd.svg'%(alpha*2,))

yrange = 0.2 + 1 + (1 + np.log(1.8))*alpha   # range to fit the right side
ax2.set_ylim(-0.4*yrange, +yrange)
ax2.set_ylabel('entropy per particle $S/Nk$')
ax2.legend(loc='lower right')
fig2.savefig('quantum ideal gas entropy %gd.svg'%(alpha*2,))

yrange = 1.5 + 0.7*alpha
ax3.set_ylim(-yrange, +0.6*yrange)
ax3.set_yticks([0])
ax3.set_yticklabels([r'$\varepsilon_0$'])
ax3.set_ylabel('chemical potential $\\mu$')
ax3.legend(loc='lower left')
fig3.savefig('quantum ideal gas chemical potential %gd.svg'%(alpha*2,))

Conditions d’utilisation

Moi, en tant que détenteur des droits d’auteur sur cette œuvre, je la publie sous la licence suivante :
Creative Commons CC-Zero Ce fichier est disponible selon les termes de la licence Creative Commons CC0 Don universel au domaine public.
La personne qui a associé une œuvre avec cet acte l’a placée dans le domaine public en renonçant mondialement à tous ses droits sur cette œuvre en vertu des lois relatives au droit d’auteur, ainsi qu’à tous les droits juridiques connexes et voisins qu’elle possédait sur l’œuvre, sans autre limite que celles imposées par la loi. Vous pouvez copier, modifier, distribuer et utiliser cette œuvre, y compris à des fins commerciales, sans qu’il soit nécessaire d’en demander la permission.

Légendes

Ajoutez en une ligne la description de ce que représente ce fichier
Pressure of classical ideal gas and quantum ideal gases (Fermi gas, Bose gas) in three dimensions as a function of temperature, for a fixed density of particles.

Éléments décrits dans ce fichier

dépeint

image/svg+xml

Historique du fichier

Cliquer sur une date et heure pour voir le fichier tel qu'il était à ce moment-là.

Date et heureVignetteDimensionsUtilisateurCommentaire
actuel19 janvier 2021 à 21:45Vignette pour la version du 19 janvier 2021 à 21:45270 × 207 (19 kio)Naniteadd bose-critical and fermi temperature ticks
18 janvier 2021 à 07:16Vignette pour la version du 18 janvier 2021 à 07:16270 × 207 (20 kio)Nanitefill closer to margins; mark origin as 0,0
23 juin 2020 à 03:23Vignette pour la version du 23 juin 2020 à 03:23270 × 207 (18 kio)NaniteUploaded own work with UploadWizard

La page suivante utilise ce fichier :

Usage global du fichier

Les autres wikis suivants utilisent ce fichier :

Métadonnées