Cœur d'un sous-groupe

type de sous-groupe normal en théorie des groupes

En mathématiques, et plus précisément en théorie des groupes, l'intersection des conjugués, dans un groupe , d'un sous-groupe de est appelée le cœur de (dans )[1] et est notée cœurG(H)[2] ou encore [3].

Le cœur de dans est le plus grand sous-groupe normal de contenu dans .

Si on désigne par / l'ensemble des classes à gauche de modulo (cet ensemble n'est pas forcément muni d'une structure de groupe, n'étant pas supposé normal dans ), on sait que opère à gauche sur / par :

Le cœur de dans est le noyau de cette opération. Il en résulte que est isomorphe à un sous-groupe de (groupe des permutations de l'ensemble ). En particulier, si est d'indice fini dans , est lui aussi d'indice fini dans et cet indice divise (factorielle de ).

Comme exemple d'usage de la notion de cœur d'un sous-groupe, on peut citer un théorème de Øystein Ore selon lequel deux sous-groupes maximaux d'un groupe fini résoluble qui ont le même cœur sont forcément conjugués[4]. Ce théorème permet de prouver des théorèmes bien connus de Philip Hall et de Roger Carter (en)[5].

Notes et références modifier

  1. Jean Delcourt, Théorie des Groupes, 2e éd., 2007, p. 81, écrit dans une note de bas de page : « [Ce sous-groupe] se nomme en anglais le core de  , ce qui peut se traduire par cœur ». Pierre Fima, Groupes, groupes quantiques et algèbres d'opérateurs, Mémoire d'habilitation, Université Paris Diderot - Paris 7, 2014, en ligne, donne cette définition plus générale : « Soit   un sous-groupe et   un sous-ensemble. Le cœur de   relativement à   est l'ensemble cœurS( )=  . » Dans la phrase suivante, il désigne par « cœur de   » le cœur de   dans  .
  2. Pierre Fima, Groupes, groupes quantiques et algèbres d'opérateurs, Mémoire d'habilitation, Université Paris Diderot - Paris 7, 2014, en ligne
  3. Voir par exemple Yakov Berkovich, « Alternate proofs of some basic theorems of finite group theory », Glasnik Matematički, vol. 40, no 60,‎ , p. 207-233 (lire en ligne), p. 207.
  4. O. Ore, « Contributions to the theory of groups of finite order », dans Duke Mathematical Journal, vol. 5 (1938), 431-460. Référence fournie par Berkovich 2005, p. 233, qui donne une démonstration (pp. 210-211).
  5. Voir Berkovich 2005, qui donne des démonstrations (pp. 210-212).