Utilisateur:Mickael.alb/Brouillon

Dans la théorie des probabilités, les inégalités de concentration fournissent des bornes sur la probabilité qu'une variable aléatoire dévie d'une certaine valeur (généralement l'espérance de cette variable aléatoire). Par exemple, la loi des grands nombres établit que la somme de variables aléatoires i.i.d. est, sous réserve de vérifier certaines conditions, proche de leur espérance commune. Certains résultats récents vont plus loin, en montrant que ce comportement est également vérifié par d'autres fonctions de variables aléatoires indépendantes[1].

Inégalités basiques modifier

Inégalité de Markov modifier

Cette inégalité indique la probabilité qu'une variable aléatoire à valeurs positives dépasse une certaine valeur, autrement dit elle permet de majorer la queue d'une loi de probabilité. En particulier, la probabilité qu'elle dépasse des valeurs de plus en plus grande est de plus en plus faible. Si   est une variable aléatoire réelle qu'on suppose presque sûrement positive alors

 

Ce résultat possède un corollaire qui généralise ce résultat à toute fonction   croissante et positive :

 

Inégalité de Bienaymé-Tchebychev modifier

Cette inégalité indique comment une variable dévie de sa moyenne. En particulier, la probabilité qu'une variable aléatoire dévie d'une valeur de plus en plus grande de sa moyenne est de plus en plus faible. On la démontre grâce à l'inégalité de Markov. Soit   une variable aléatoire admettant un moment d'ordre deux alors

 

On peut généraliser cela à une variable aléatoire admettant un moment d'ordre   :

 

Inégalité de Chernoff modifier

Cette inégalité permet de majorer la queue d'une loi de probabilité au même titre que l'inégalité de Markov. Elle ressemble à cette dernière mais donne une borne exponentielle.

Soit   une variable aléatoire dont la fonction génératrice   est finie. Alors

 

  est la transformée de Cramer définie par  

Inégalité de Bennett modifier

Cette inégalité majore la fonction génératrice des cumulants d'une somme de variables aléatoires indépendantes majorées centrées et majore en conséquence d'après l'inégalité de Chernoff la probabilité que cette somme dévie avec une quantité donnée. Soient   des variables i.i.d. de variance finie et tels que   presque-sûrement pour tout   et  . On pose   et  . Pour tout  ,

 

  pour  . En appliquant l'inégalité de Chernoff on obtient en particulier que pour tout  ,

 

  pour  .

Inégalités de la variance modifier

Inégalité d'Efron-Stein modifier

Cette inégalité borne la variance d'une fonction générale d'une variable aléatoire[1]. Soient   des variables indépendantes (pas nécessairement identiquement distribuées) et tels que   pour tout  . En posant   et   alors

 

Inégalités du processus empirique modifier

Inégalité DKW modifier

Cette inégalité borne la probabilité que la fonction de répartition empirique diffère uniformément de la fonction de répartition de la variable aléatoire étudiée.

Soient   des variables iid de fonction de répartition  . On note   la fonction de répartition empirique basée sur l'échantillon  , c'est-à-dire

 

Alors l'inégalité d'un côté est donnée par :

 

Cette inégalité a pour conséquence l'inégalité des deux côtés suivante (qui n'a pas de conditions sur  ) :

 

Inégalité de Borell modifier

Cette inégalité donne une borne exponentielle pour la concentration d'un processus stochastique gaussien[2]. Soit   un processus gaussien stochastique séparable indexé par un espace semi-métrique  . On note   le supremum   et on suppose que le processus est centré, i.e.   pour tout  . On note   le supremum de la variance du processus et   la médiane de la variable  . Pour tout  ,

 

Inégalité de Bousquet modifier

L'inégalité de Bousquet donne la concentration du processus empirique indexé par des classes de fonctions bornées[3]. Soient   des variables aléatoires réelles i.i.d. indexés par  . On suppose que les variables sont centrées et majorées par 1, i.e.   et   pour tout   et  . On note  . Alors pour tout  ,

 

  pour  ,   avec  . En optimisant la fonction  , on obtient en particulier

 

Inégalité de Talagrand modifier

Cette inégalité donne également une borne exponentielle pour la concentration du processus empirique indexé par des classes de fonctions mais celles-ci doivent vérifier des hypothèses d'entropie.

Références modifier

  1. a et b (en) Olivier Boucheron, Gabor Lugosi et Pascal Massart, Concentration inequalities: A Nonasymptotic Theory of Independence, OUP Oxford, 496 p. (ISBN 019876765X)
  2. (en) Christer Borell, « The Brunn-Minkowski inequality in Gauss space », Inventiones mathematicae, vol. 30, no 2,‎ , p. 207–216 (ISSN 0020-9910 et 1432-1297, DOI 10.1007/BF01425510, lire en ligne, consulté le )
  3. (fr + en) Olivier Bousquet, « A Bennett Concentration Inequality and Its Application to Suprema of Empirical Processe », Académie des sciences,‎ , p. 1-11

Catégorie:Probabilités