Règle de résolution

règle d'inférence logique

En logique mathématique, la règle de résolution ou principe de résolution de Robinson est une règle d'inférence logique qui généralise le modus ponens. Cette règle est principalement utilisée dans les systèmes de preuve automatiques, elle est à la base du langage de programmation logique Prolog.

En logique propositionnelle

modifier

La règle du modus ponens s'écrit   et se lit : de p et de "p implique q", je déduis q. On peut réécrire l'implication "p implique q" comme "p est faux ou q est vraie". Ainsi, la règle du modus ponens s'écrit  .

La règle de résolution, elle, généralise la règle du modus ponens car elle s'applique sur des clauses quelconques. Une clause est une formule qui est une disjonction (un "ou") de littéraux (une proposition atomique ou une proposition atomique précédée d'une négation). Par exemple   est une clause avec deux littéraux ("non p" et "q"). Ainsi, en logique propositionnelle, la règle de résolution s'écrit :

 

Autrement dit, étant donné deux clauses   et  , on en déduit  . La formule déduite, c'est-à-dire   est appelé résolvant de   et  . Bien sûr, l'application de la règle est donnée à permutation près des littéraux.

Exemples

modifier

Par exemple :

 

   dénote la contradiction (clause vide).

En logique des prédicats

modifier

En logique des prédicats les formules atomiques sont de la forme    est un symbole de prédicat et les   sont des termes composés de constantes, de variables et de symboles de fonctions. La règle de résolution en logique des prédicats est similaire à la règle de résolution en logique propositionnelle mais les formules atomiques partagées par deux clauses ne doivent pas être identiques mais unifiables. Deux formules atomiques sont unifiables s'il existe une substitution des variables par des termes qui rend les deux formules identiques (voir unification). Par exemple :

 

est une application de la règle de résolution en logique des prédicats. Elle se lit : de "P(a)" et de "(pour tout x) non P(x) ou Q(x)", je déduis "Q(a)". Ici, la formule atomique   et la formule atomique   sont unifiables avec la substitution  . Plus généralement, la règle de résolution en logique des prédicats est :

 

  est un unificateur principal des formules atomiques   et  .

On peut effectuer la résolution sur deux littéraux s'ils portent sur des formules atomiques identiques ou sur des formules unifiables.

Par exemple, les formules atomiques

  et  , où a et c sont des constantes,

sont unifiables par la substitution  . Par contre

  et  , où a, b et c sont des constantes,

ne sont pas unifiables car les constantes ne peuvent être remplacées.

Exemple

modifier

 

 

 

La substitution   permet d'appliquer la résolution sur Q, entre   et  , ce qui produit

 

La substitution   permet d'appliquer la résolution sur P, entre   et   pour produire

 

Résolution et preuves par réfutation

modifier

En général on utilise le principe de résolution pour effectuer des preuves par réfutation. Pour prouver que la formule   est une conséquence logique des formules   on démontre que l'ensemble   est inconsistant.

Pratiquement, il faut commencer par mettre toutes les formules sous forme clausale, pour cela on doit les mettre sous forme prénexe (tous les quantificateurs au début) puis les skolémiser.

Pour montrer qu'un ensemble de clauses est inconsistant, il faut réussir à engendrer la clause vide en appliquant la règle de résolution autant de fois que nécessaire.


Exemple

modifier

On veut montrer que les trois formules

  1.  ,
  2.  ,
  3.  

ont pour conséquence la formule  .

La première formule est équivalente à   qui est équivalente à   et produit donc les deux clauses

 

 

La seconde formule donne immédiatement la clause

 

et la troisième

 .

La négation de la conséquence cherchée donne

 

Par résolution sur   de   et   avec   on produit

 

Par résolution sur   de   et   on produit

 

Enfin   et   donnent la clause vide.

Stratégie d'application de la règle

modifier

Le principe de résolution étant complet, si l'ensemble de clauses considéré est inconsistant, on arrive toujours à générer la clause vide. Par contre, le problème de la consistance (satisfaisabilité) n'étant pas décidable en logique des prédicats, il n'existe pas de méthode pour nous dire quelles résolutions effectuer et dans quel ordre pour arriver à la clause vide.

On peut facilement trouver des exemples où l'on « s'enfonce » dans la génération d'une infinité des clauses sans jamais atteindre la clause vide, alors qu'on l'aurait obtenue en faisant les bons choix.

Différentes stratégies ont été développées pour guider le processus. Le système Prolog se base, par exemple, sur l'ordre d'écriture des clauses et l'ordre des littéraux dans les clauses. D'autres systèmes, comme CyC, utilisent une stratégie de coupure (en fonction des ressources consommées) pour éviter de générer des branches infinies.

Preuves de longueurs minimales

modifier

Haken a démontré que toute réfutation du principe des tiroirs avec n chaussettes (en anglais, il s'agit du pigeonhole principle) est de longueur au moins 2n/10[réf. nécessaire].

Liens externes

modifier

Exercices pour manipuler la règle de résolution, outil développé à l'ENS Rennes

Références

modifier
  • (en) Robinson J. A., A Machine-Oriented Logic Based on the Resolution Principle, J. Assoc. Comput. Mach. 12, 23-41, 1965.
  • (en) Kowalski, R., Logic for Problem Solving, North Holland, Elsevier, 1979.
  • (fr) Benzaken, C., Systèmes formels : introduction à la logique et à la théorie des langages, Masson, Paris, 1991.
  • (en) Bundy, A., The Computer Modelling of Mathematical Reasoning, Academic Press, London, 1983.
  • (en) Huth, M., Ryan, M. Logic in Computer Science, Cambridge University Press, 2004.