Puissance du continu

ensemble équipotent à l'ensemble ℝ des nombres réels

En mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble ℝ des nombres réels, c'est-à-dire s'il existe une bijection de E dans ℝ.

Le cardinal de ℝ est parfois noté , en référence au continu (en), nom donné à l'ensemble ordonné (ℝ, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.

Il est aussi couramment noté 2ℵ₀, parce que ℝ est équipotent à l'ensemble P(ℕ) des parties de l'ensemble ℕ des entiers naturels, dont la cardinalité (le dénombrable) est notée ℵ₀, et que pour tout ensemble E, le cardinal de est , où désigne le cardinal de E.

HistoireModifier

On doit cette notion à Georg Cantor qui a montré, dans un article paru en 1874, que le continu n'était pas équipotent au dénombrable, et par là-même l'existence de plusieurs « infinis ».

Cantor a tenté vainement de démontrer que tout sous-ensemble des réels était soit dénombrable, soit de la puissance du continu. Cette hypothèse, dite hypothèse du continu, ne peut être ni confirmée ni infirmée dans la théorie des ensembles ZFC dont on pense que c'est une formalisation assez fidèle de la théorie de Cantor.

La puissance du continu est la cardinalité de l'ensemble des parties de ℕModifier

Il revient au même — en identifiant chaque partie de ℕ à sa fonction caractéristique — d'affirmer que ℝ est équipotent à l'ensemble {0, 1} des suites de zéros et de uns. L'idée principale pour le démontrer est de considérer une telle suite (k0, k1, … ) comme le développement 0,k0k1… en base n d'un réel compris entre 0 et 1.

  • En base n > 2, l'application qui à toute suite de zéros et de uns associe le réel qu'elle représente est une injection de {0, 1} dans [0, 1[ donc dans ℝ[note 1], si bien que card(P(ℕ)) ≤ card(ℝ). Par ailleurs, l'application qui à tout réel x associe l'ensemble des rationnels strictement inférieurs à x est également injective donc card(ℝ) ≤ card(P(ℚ)) = card(P(ℕ)). Le théorème de Cantor-Bernstein permet de conclure.
  • La base 2 nécessite une précaution, à cause des possibilités de « développement impropre » (par exemple : 0,0111… = 0,1000…), mais permet de donner une preuve qui ne s'appuie pas sur le théorème de Cantor-Bernstein[1].

Exemples d'ensembles ayant la puissance du continuModifier

Indécidabilité de la cardinalité de la puissance du continuModifier

La cardinalité de ℝ est 2ℵ₀. L'affirmation que c'est 1 est appelée hypothèse du continu. Elle est indécidable dans la théorie des ensembles usuelle.

Notes et référencesModifier

NotesModifier

  1. Une variante est de considérer, pour n = 3, l'ensemble de Cantor.
  2. En identifiant une partie dénombrable fixée de E à l'ensemble des suites finies de 0 et de 1 et en sélectionnant, pour chaque suite infinie de 0 et de 1, la partie de E constituée de ses segments initiaux.

RéférencesModifier

  1. Voir par exemple « Ensembles non dénombrables » sur Wikiversité.
  2. (en) Julian F. Fleron, « A note on the history of the Cantor set and Cantor function », Mathematics Magazine, vol. 67,‎ , p. 136-140 (lire en ligne).