Fonction L p-adique

(Redirigé depuis P-adic L-function)

En mathématiques, une fonction zêta p-adique, et plus généralement une fonction L p-adique, est une fonction analogue à la fonction zêta de Riemann, ou plus généralement des fonctions L, pour lesquels les ensembles de départ et d'arrivé sont les nombres p-adiques (où p est un nombre premier). Par exemple, l'ensemble de départ peut être l'ensemble des entiers p-adique Zp, un p-groupe profini, ou une famille de représentations galoisiennes p-adique, et l'image peut être l'ensemble Qp ou sa clôture algébrique.

La source d'une fonction L p-adique est généralement de deux types. La première — à partir de laquelle Tomio Kubota (en) et Heinrich-Wolfgang Leopoldt (en) ont donné la première construction d'une fonction L p-adique (Kubota et Leopoldt 1964) — est via l'interpolation p-adique des valeurs spéciales des fonctions L (en). Par exemple, Kubota-Leopoldt ont utilisé les congruences de Kummer sur les nombres de Bernoulli pour construire une fonction L p-adique, la fonction zêta de Riemann p-adique ζp(s), dont les valeurs aux entiers impairs négatifs sont celles de la fonction zêta de Riemann (à un facteur de correction explicite près). Ces fonctions L p-adiques sont généralement dites fonctions L p-adiques analytiques. L'autre source de fonctions L p-adiques — découverte pour la première fois par Kenkichi Iwasawa — provient de la théorie des corps cyclotomiques, et plus généralement de certains représentation de Galois sur des tours de corps cyclotomiques. Une fonction L p-adique obtenue de cette manière est dite fonction L arithmétique p-adique car elle contient des informations sur le module de Galois donné. La conjecture principale de la théorie d'Iwasawa (en) (devenu un théorème dû à Barry Mazur et Andrew Wiles) est l'affirmation que la fonction L p-adique de Kubota-Leopoldt et un analogue arithmétique construit via la théorie d'Iwasawa sont essentiellement les mêmes.

Fonctions L de DirichletModifier

Une fonction L de Dirichlet est donnée par le prolongement analytique de

 

La fonction L de Dirichlet aux entiers négatifs vaut

 

Bn sont les nombres de Bernoulli généralisés définis par

 

pour un caractère de Dirichlet χ de conducteur f.

Définition par interpolationModifier

La fonction L p-adique de Kubota–Leopoldt Lp(s, χ) interpole la fonction L de Dirichlet à l'exception du le facteur d'Euler en p. Plus précisément, Lp(s, χ) est l'unique fonction continue du nombre p-adique s telle que

 

pour n positif divisible par p − 1. Le terme de droite est la fonction L de Dirichlet usuelle, sans le terme d'ordre p sans quoi le terme de gauche n'aurait pas été continu au sens p-adique. La continuité de ce dernier est étroitement lié aux congruences de Kummer.

Lorsque n n'est pas divisible par p − 1, on pose plutôt

 

pour tout n positif. Ici χ multiplié par une puissance du caractère de Teichmüller (en) ω.

Vues comme une mesure p-adiqueModifier

Les fonctions L p-adique peuvent aussi être vues comme des mesures p-adiques (ou distributions p-adiques) sur des groupes de Galois p-profinis. La transition entre ce point de vue et celui de Kubota–Leopoldt (en tant que fonctions de Zp dans Qp) s'effectue par la transformée de Mazur–Mellin (et la théorie des corps de classes).

Corps totalement réelModifier

Deligne & Ribet (1980), s'appuyant sur le travail de Serre (1973), ont construit des fonctions L p-adiques sur des corps totalement réels. Indépendamment, Barsky (1978) et Cassou-Noguès (1979) ont fait la même chose, en suivant l'approche de Takuro Shintani concernant l'étude des valeurs L.

RéférencesModifier