Nickel 56

isotope du nickel
Nickel 56

table

Général
Nom Nickel 563
Symbole 56
28
Ni
Neutrons 28
Protons 28
Données physiques
Demi-vie 6,075(10) j
Produit de désintégration 56Co
Masse atomique 55,942132(12) u
Spin 0+
Énergie de liaison 483 987,827 ± 11,131 keV
Désintégration Produit Énergie (MeV)
β + 2,136

Le nickel 56, noté 56Ni, est l'isotope du nickel dont le nombre de masse est égal à 56 : son noyau atomique compte 28 protons et 28 neutrons avec un spin 0+ pour une masse atomique de 55,942132 g/mol. Il est caractérisé par un défaut de masse de 53 899 645 ± 11 130 eV/c2 et une énergie de liaison nucléaire de 483 987 827 ± 11 131 eV[1].

Ce nucléide est instable, avec une période radioactive de 6,075 jours : il connaît deux désintégrations β + successives en cobalt 56 puis en fer 56 :

p


Cette chaîne de désintégrations produit une bonne partie de la luminosité des supernovas qui explosent après le processus de fusion du silicium. Cette fusion du silicium convertit le silicium 28 en nickel 56 par fusions successives de l'équivalent de sept noyaux d'hélium à des températures comprises entre 2,7 et 3,5 GK (milliards de degrés). Après, aucune autre fusion nucléaire ne peut produire de l'énergie. C'est la raison de l'abondance naturelle du fer 56. Cette fusion du silicium prend moins d'une semaine dans le cœur d'étoiles au moins 8 fois plus massives que le Soleil. Plus l'étoile est lourde, plus la pression et la température du cœur sont grandes, plus c'est rapide. Puis le cœur s'effondre, les couches de combustibles nucléaires autour du cœur tombent dessus, se compriment, chauffent et brûlent rapidement (de l'ordre de la seconde ou fraction de seconde), puis c'est l'explosion en supernova à effondrement de cœur. Cette fusion du silicium prend quelques minutes ou même quelques secondes dans les autres types de supernova.

La réaction s'arrête dans les étoiles au nickel 56 — intégralement converti en fer 56 — car l'énergie de liaison nucléaire par nucléon cesse de croître au niveau du nickel — et non du fer, contrairement à une idée répandue[2] — et décroît au-delà : la fusion nucléaire cesse donc de libérer de l'énergie à partir du nickel, et c'est la fission nucléaire qui permet de libérer l'énergie des atomes plus lourds que le nickel ; le zinc 60 n'est donc pas formé par fusion à partir du nickel, car cela serait consommateur d'énergie :

Énergie de liaison nucléaire par nucléon en fonction du nombre de nucléons des noyaux atomiques.

Le noyau de 56Ni a la particularité d'être « doublement magique », c'est-à-dire d'être constitué d'un « nombre magique » à la fois de protons et de neutrons. Néanmoins, des mesures du moment dipolaire du noyau de cuivre 57 montreraient que le noyau de nickel 56 serait moins « inerte » qu'attendu pour un tel noyau doublement magique[3].

Notes et référencesModifier

  1. Matpack – Periodic Table of the Elements Properties of Nuclides: 28-Ni-56
  2. C'est le nickel 62 qui a l'énergie de liaison nucléaire par nucléon la plus élevée de tous les noyaux atomiques : 8,7948 MeV par nucléon, contre 8,7906 MeV par nucléon pour le fer 56.
  3. NSCL at Michigan State University : « Nickel-56 not so doubly magic? »

Articles liésModifier


1  H                                                             He
2  Li Be   B C N O F Ne
3  Na Mg   Al Si P S Cl Ar
4  K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
Tableau périodique des isotopes