Matrice stochastique

En mathématiques, une matrice stochastique (aussi appelée matrice de Markov) est une matrice carrée (finie ou infinie) dont chaque élément est un réel positif et dont la somme des éléments de chaque ligne vaut 1. Cela correspond, en théorie des probabilités, à la matrice de transition d'une chaîne de Markov.

DéfinitionsModifier

Une matrice   est dite stochastique si toutes ses entrées sont positives (ou nulles) et si, pour tout  , on a  , c'est-à-dire que la somme des coordonnées de chaque ligne vaut 1[1].

Une matrice stochastique est dite régulière s'il existe un entier   tel que la matrice   ne contient que des réels strictement positifs.

Une matrice est dite bistochastique (ou doublement stochastique) si la somme des éléments de chaque ligne et de chaque colonne vaut 1, autrement si   et sa transposée   sont stochastiques.

PropriétésModifier

Une autre caractérisation des matrices stochastiques est donnée par :

  •   est une matrice stochastique si et seulement si   (ses coefficients sont positifs ou nuls) et  , où   désigne le vecteur de   dont toutes les coordonnées valent 1.
  •   est bistochastique si  ,   et  , où   est le vecteur transposé de  .

D'après la propriété précédente, puisque 1 est une valeur propre de   avec comme vecteur propre à droite le vecteur colonne dont toutes les coordonnées valent 1 :

  • Si   est une matrice stochastique, on appelle vecteur stable pour   un vecteur ligne non nul   tel que   , autrement dit : un vecteur propre à gauche pour la valeur propre 1 (et   possède toujours au moins un vecteur stable).

Une caractérisation du rayon spectral d'une matrice stochastique est donnée par :

  • Si   est une matrice stochastique, alors   pour tout  , de sorte que le rayon spectral  . Or, comme  , on a en fait  . Ainsi, le rayon spectral d'une matrice stochastique vaut précisément 1.

D'autres résultats sont donnés par :

  • Le produit de deux matrices stochastiques est stochastique.
  • Toute matrice stochastique indexée par E×E opère sur l'espace des applications bornées de E dans   .
  • Si   est une matrice stochastique et si   est une probabilité alors   est une probabilité.

ExempleModifier

La matrice suivante est stochastique mais pas bistochastique :

 

Le vecteur   est stable pour M.

La matrice stochastique M est régulière car

 

Théorème des matrices stochastiquesModifier

Le théorème des matrices stochastiques stipule que, si A est une matrice stochastique régulière, alors

De plus, si x0 est une loi initiale quelconque (i.e. est un vecteur à coordonnées positives ou nulles et de somme 1), et si xk+1 = xkA pour k = 0, 1, 2, … alors la chaîne de Markov {xk} converge vers t quand  . C’est-à-dire :

 

Quelques autres résultatsModifier

Le rôle des matrices stochastiques est important, notamment dans l'étude des chaînes de Markov. Une caractéristique importante des matrices doublement stochastiques (ou bistochastiques) est fourni par les matrices de permutation  ,  , dont les coefficients valent  , avec   le symbole de Kronecker.

Le théorème de Birkhoff montre ce rôle central qu'ont les matrices de permutations dans la caractérisation des matrices bistochastiques :

Théorème de Birkhoff — Une matrice   est doublement stochastique si et seulement si elle est barycentre de matrices de permutations.

Une conséquence de théorème est donnée par le résultat suivant[2] :

Corollaire — Soit   une norme sur  , invariante par permutation des coordonnées. Alors   pour toute matrice doublement stochastique.

Deux autres résultats sur les matrices bistochastiques utilisent la relation décrite par le symbole  , défini par : Soient   et   deux suites de   nombres réels. On dit que b majore a, et on note   si :

  •   pour tout   ;
  •  .

Il s'agit d'une relation d'ordre partielle.

Les deux théorèmes sont :

Théorème — Une matrice   est doublement stochastique si et seulement si   pour tout  .

Théorème — Soient  . ALors   si et seulement s'il existe une matrice  , doublement stochastique, telle que  .

Voir aussiModifier

BibliographieModifier

Denis Serre, Les Matrices : Théorie et pratique, Paris, Dunod, , 176 p. (ISBN 2-10-005515-1). 

Notes et référencesModifier

  1. Certains auteurs parlent de matrice stochastique à droite, la transposée d'une telle matrice (dont la somme des coordonnées de chaque colonne vaut 1) est alors dite stochastique à gauche.
  2. (en) F. L. Bauer, J. Stoer et C. Witzgall, « Absolute and monotonic norms », Numerische Mathematik, vol. 3, no 1,‎ , p. 257–264 (ISSN 0029-599X et 0945-3245, DOI 10.1007/bf01386026, lire en ligne, consulté le )

Articles connexesModifier