Ouvrir le menu principal

Matrice définie positive

Matrice symétrique réelle définie positiveModifier

Tout d'abord, soit   une matrice à éléments réels ou complexes, nous notons :

Soit M une matrice symétrique réelle d'ordre n. Elle est dite définie positive si elle est positive et inversible, autrement dit si elle vérifie l'une des quatre propriétés équivalentes suivantes :

  1. Pour toute matrice colonne non nulle   à n éléments réels, on a Autrement dit, la forme quadratique définie par M est strictement positive pour  .
  2. Toutes les valeurs propres de M (qui sont nécessairement réelles) sont strictement positives.
  3. La forme bilinéaire symétrique est un produit scalaire sur ℝn.
  4. Il existe une matrice   inversible telle que M = NTN (autrement dit : M est congruente à la matrice identité).

Une matrice symétrique réelle est dite définie négative si son opposée (symétrique elle aussi) est définie positive.

Exemple de baseModifier

La caractérisation 4. ci-dessus peut se justifier ainsi :

  • Pour toute matrice carrée réelle N, la matrice symétrique NTN est positive.
  • Réciproquement, toute matrice réelle symétrique positive est de cette forme (la matrice N n'est pas unique ; elle l'est si l'on impose qu'elle soit elle-même positive).
  • Or si M = NTN (avec N carrée) alors M est inversible si et seulement si N l'est.

Elle permet de montrer que la matrice de Gram d'une famille de n vecteurs d'un espace préhilbertien (réel ou complexe) est définie positive si et seulement si la famille est libre. Par exemple, toute matrice de Hilbert est définie positive.

Intérêt des matrices définies positivesModifier

  • Beaucoup de problèmes de résolution de systèmes linéaires les plus faciles à traiter numériquement sont ceux dont les matrices sont symétriques définies positives[1] : on dispose d'algorithmes numériquement stables et rapides pour l'inversion[2] et la diagonalisation des matrices définies positives.
  • Toute matrice symétrique réelle positive est limite d'une suite de matrices symétriques réelles définies positives, ce qui est à la base de nombreux raisonnements par densité[3].

Matrice hermitienne définie positiveModifier

On étend les propriétés et définitions précédentes aux matrices complexes.

Soit M une matrice carrée complexe d'ordre n. Elle est dite définie positive si elle vérifie l'une des quatre propriétés équivalentes suivantes :

  1. Pour toute matrice colonne non nulle   à n éléments complexes, le nombre complexe   est un réel strictement positif.
  2. M est hermitienne et toutes ses valeurs propres sont strictement positives.
  3. La forme sesquilinéaire est un produit scalaire sur   (au sens : forme hermitienne définie positive).
  4. Il existe une matrice   inversible telle que M = N*N.

M est dite définie négative si son opposée est définie positive.

PropriétésModifier

  • La matrice inverse d'une matrice définie positive est définie positive.
  • Si M est définie positive et si r est un réel strictement positif, alors rM est définie positive.
  • Si M et N sont positives et si l'une des deux est inversible, alors M + N est définie positive.
  • Une matrice positive est définie positive si et seulement si sa racine carrée positive est inversible. Cette propriété est utilisée pour la décomposition polaire.
  • Inégalité de Hadamard (en) : le déterminant d'une matrice définie positive est inférieur ou égal au produit de ses éléments diagonaux.

Critère de SylvesterModifier

Pour qu'une matrice  , réelle symétrique ou complexe hermitienne, soit définie positive, il faut et suffit que les   matrices   pour   de 1 à  , aient leur déterminant strictement positif, autrement dit que les   mineurs principaux dominants soient strictement positifs.

Remarques
  • Pour n = 2, le critère de Sylvester est essentiellement le critère de positivité du trinôme du second degré.
  • Plus généralement, l'indice d'une matrice symétrique réelle est égal au nombre de changements de signes dans la suite de ses   mineurs principaux (en incluant  ), sous réserve que tous soient non nuls.
  • En fait, sur un corps (commutatif) quelconque, cette condition de non-nullité des mineurs principaux est une condition nécessaire et suffisante pour qu'il existe une matrice   triangulaire supérieure telle que   soit diagonale et de rang maximum (il suffit d'adapter la démonstration qui suit).

Preuve. Notons   la forme quadratique associée à  , définie par  .

La condition est nécessaire. On remarque d'abord que si   est définie positive, alors  . En effet, par rapport à une base orthogonale pour cette forme quadratique (il en existe, d'après la réduction de Gauss), la matrice de   s'écrit   les   étant tous strictement positifs. Alors   (  étant la matrice de passage), donc  . Le résultat s'ensuit, en appliquant le même raisonnement à la restriction de   aux sous-espaces  , pour  .

Montrons maintenant que la condition est suffisante. On procède par récurrence sur la dimension. Pour   c'est évident puisqu'en dimension 0 l'ensemble des vecteurs non nuls est vide. Supposons la propriété vraie pour   et notons  . Par hypothèse de récurrence,   est définie positive. De plus,   est non dégénérée (parce que le déterminant de   est non nul) donc

 

Soient   un vecteur non nul de   et  . Alors   et   ont même signe d'après le même argument que dans la première partie (qui met implicitement en jeu le discriminant), or par hypothèse   et   sont strictement positifs. Donc  , si bien que la restriction de   à   est, elle aussi, définie positive, ce qui montre que   est définie positive.

Dans le cas complexe, plus général, la preuve est analogue, en considérant la forme hermitienne définie par la matrice.

Une autre méthode[4] est d'utiliser le théorème d'entrelacement de Cauchy.

Notes et référencesModifier

  1. Philippe G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation, Dunod, Paris, 1998, p. 26.
  2. https://www.labri.fr/perso/zvonkin/Enseignement/CMA/mat-pos.pdf
  3. Jean Voedts, Cours de mathématiques, MP-MP*, Ellipses, Paris, 2002 (ISBN 978-2729806668), p. 634.
  4. (en) Roger A. Horn et Charles R. Johnson, Matrix Analysis, Cambridge University Press, , 2e éd. (1re éd. 1985) (ISBN 978-0-521-83940-2, lire en ligne), p. 439.

Voir aussiModifier

  • Factorisation de Cholesky - Pour toute matrice symétrique définie positive  , il existe une matrice triangulaire inférieure   telle que  .
  • Complément de Schur