Ouvrir le menu principal
Luc Illusie
Illussie en Septembre 2014, pendant une conférence sur le théorème "Thom-Sebastiani" à Bures-sur-Yvette, en France.
Illusie en Septembre 2014, pendant une conférence à l’IHÉS, Bures-sur-Yvette, France.
Naissance (79 ans)
Nationalité Drapeau de la France France
Domaines Mathématiques
Institutions Université Paris-Sud
Formation École normale supérieure de Paris
Université Paris-Sud
Directeur de thèse Alexandre Grothendieck
Étudiants en thèse Torsten Ekedahl (sv)
Gérard Laumon
Renommé pour Complexe cotangent (en)
Distinctions Médaille Émile Picard

Luc Illusie, né le , est un mathématicien français, spécialisé en géométrie algébrique.

Sommaire

BiographieModifier

Luc Illusie est reçu en 1959 au concours de l'École normale supérieure, rue d'Ulm. Il est un élève du mathématicien Henri Cartan, et participe au séminaire Cartan-Schwartz en 1963-1964. En 1963, il devient attaché de recherches au CNRS[1].

À partir de 1964, il étudie aussi sous la direction d'Alexandre Grothendieck[1]. Il introduit en 1970, avec Daniel Quillen, le concept de complexe cotangent (en). Il obtient son doctorat d'État en 1971 à l'université de Paris-Sud Orsay, avec sa thèse Complexe cotangent et déformations[2].

Chargé de recherches, puis maître de recherches, au laboratoire de mathématiques[2] de l'université Paris-Sud, il y est ensuite professeur. De 1984 à 1995, il y dirige l'équipe d'arithmétique et de géométrie algébrique. En 1993, il participe à la révision du manuscrit de Wiles sur la démonstration du dernier théorème de Fermat[3].

Il est professeur émérite depuis 2005[4]. Parmi les thèses qu'il a encadrées figurent celles de Torsten Ekedahl (sv) et de Gérard Laumon.

En 2012, Luc Illusie reçoit la médaille Émile Picard « pour ses travaux fondamentaux sur le complexe cotangent, la formule de Picard-Lefschetz (en), la théorie de Hodge et la géométrie logarithmique (en) »[4].

DistinctionsModifier

Sélection de travauxModifier

  • Complexe cotangent et déformations, Lecture Notes in Mathematics 239 et 283, Berlin et New-York, Springer, 1971-1972.
  • (éditeur) Cohomologie ℓ-adique et fonctions L, Séminaire de Géométrie Algébrique du Bois-Marie 1965-66, SGA 5, dirigé par A. Grothendieck, Lecture Notes in Mathematics 589, Berlin et New-York, Springer, 1977.
  • (avec P. Berthelot et A. Grothendieck), Théorie des intersections (en) et théorème de Riemann-Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966-67, SGA 6, Lecture Notes in Mathematics 225, Berlin et New-York, Springer, 1971.
  • « Complexe de de Rham-Witt et cohomologie cristalline », ASENS, vol. 12, no 4,‎ , p. 501-661 (lire en ligne).
  • (coéditeur avec Jean Giraud et Michel Raynaud), Surfaces algébriques, Séminaire de géométrie algébrique d'Orsay 1976-78, Lecture Notes in Mathematics 868, Berlin et New-York, Springer, 1981.
  • (coauteur avec M. Raynaud) « Les suites spectrales associées au complexe de De Rham-Witt », Publ. Math. IHES, vol. 57, 1983, p. 73-212.
  • (coauteur avec P. Deligne), « Relèvements modulo p² et décomposition du complexe de de Rham », Inv. math., vol. 89,‎ , p. 247-270.
  • « Sur la formule de Picard-Lefschetz », dans Algebraic Geometry 2000. Azumino (Hotaka), Tokyo, Mathematical Society of Japan, coll. « Advanced Studies in Pure Mathematics » (no 36), , p. 249-268.

Notes et référencesModifier

  1. a et b « Reminiscences of Grothendieck and His School », Notices of the AMS,‎ (lire en ligne).
  2. a et b « Illusie, Luc », notice BnF no FRBNF12189042.
  3. Albert Violant I Holz : L’énigme de Fermat : Trois siècles de défis mathématiques, édition réalisée avec le soutien de l’Institut Henri-Poincaré, et en collaboration avec images des Maths, 2013, (ISBN 978-2-8237-0106-7), page 141.
  4. a b et c Académie des sciences, [PDF] « Lauréat de l'année 2012 : Ilusie, Luc », 2012.
(de) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en allemand intitulé « Luc Illusie » (voir la liste des auteurs).

Liens externesModifier