Loi de Henry

Loi donnant la solubilité d'un gaz dans un liquide en fonction de la pression.

En physique, et plus particulièrement en thermodynamique, la loi de Henry, établie empiriquement par le physicien britannique William Henry en 1803[1], énonce que[2],[3] :

« À température constante et à saturation, la pression partielle dans la phase vapeur d'un soluté volatil est proportionnelle à la fraction molaire de ce corps dans la solution liquide. »

En pratique, elle ne s'applique qu'aux faibles concentrations du soluté (fraction molaire inférieure à 0,05[3]) et à des pressions de moins de 10 bar (domaine d'application de la loi des gaz parfaits). Le soluté peut être un gaz dissout ou plus généralement tout corps volatil très faiblement soluble ou très dilué. Elle n'est également appliquable qu'à des mélange binaires, ne contenant qu'un seul soluté et un seul solvant. Par extension à l'aide de coefficients de fugacité et d'activité elle peut être appliquée à des mélanges multicomposants réels. Le pendant de la loi de Henry pour les solvants est la loi de Raoult.

Elle est utilisée dans de nombreux domaines de la chimie, de la physique et de la météorologie.

Énoncé, définitions et démonstrationModifier

Énoncé de la loi de HenryModifier

On considère une solution liquide constituée d'un soluté   dissout dans un solvant  . La loi de Henry relie la pression partielle   du soluté en phase gazeuse à sa fraction molaire   en phase liquide à l'équilibre liquide-vapeur selon[2],[3] :

Loi de Henry
pression partielle du soluté   dans le solvant   :  

avec les notations :

  •   la pression totale du mélange ;
  •   la pression partielle du soluté  , par définition   ;
  •   la constante de Henry du soluté   dans le solvant  , aux pression   et température   du mélange ; la constante de Henry a la dimension d'une pression ;   est la notation recommandée par le Green Book de l'Union internationale de chimie pure et appliquée (IUPAC)[4], on trouve également  ,   voire   dans la littérature ;
  •   la fraction molaire du soluté   dans la phase vapeur ;
  •   la fraction molaire du soluté   dans la phase liquide.

La littérature utilise parfois l'inverse de la constante de Henry   définie précédemment,  , et l'appelle également constante de Henry. Sa dimension est alors l'inverse de celle d'une pression, et la loi de Henry s'énonce selon[5],[6] :

« À température constante et à saturation, la quantité de gaz dissout dans un liquide est proportionnelle à la pression partielle qu'exerce ce gaz sur le liquide. »

et s'écrit sous la forme :

Loi de Henry :  

Il existe aussi d'autres formes de la loi de Henry, écrites non pas en fonction de la fraction molaire du soluté mais de sa concentration molaire ou de sa molalité. Les lecteurs de littérature spécialisée doivent être attentifs à noter quelle version de l'équation de la loi de Henry est utilisée[7]. Voir le paragraphe Constantes de Henry pour des gaz dissouts dans l'eau.

La loi de Henry établissant l'état d'équilibre liquide-vapeur d'une solution liquide, les solutés considérés ici sont des espèces chimiques capables de passer en phase gaz dans les conditions de pression et de température considérées, ce qui exclut les solutés solides tels les sels. Un soluté répondant à la loi de Henry est typiquement un composant très volatil, généralement gazeux dans les conditions de température et pression du mélange : soit un fluide supercritique (oxygène, azote pour un mélange dans les CNTP), soit un fluide subcritique ayant une pression de vapeur saturante supérieure à la pression du mélange (propane, butane pour un mélange dans les CNTP). Cependant, un soluté répondant à la loi de Henry peut être également un fluide subcritique liquide (ayant une pression de vapeur saturante inférieure à la pression du mélange, comme le pentane pour un mélange dans les CNTP) présent en faible quantité dans la solution. De façon générale, un soluté   répondant à la loi de Henry est un corps capable de passer en phase gaz dans les conditions du mélange et dont la fraction molaire en phase liquide est faible, soit  . Un solvant   est un corps dont la fraction molaire en phase liquide est très supérieure à celle du soluté, soit  , se comportant quasiment comme un corps pur, soit  . La relation de Duhem-Margules impose que si l'équilibre liquide-vapeur d'un soluté répond à la loi de Henry, celui du solvant répond à la loi de Raoult.

L'équilibre liquide-vapeur déterminé par la loi de Henry est un état stable, appelé état de saturation du solvant par le soluté. Dans les conditions de pression et température données, le solvant peut contenir plus de soluté que la quantité déterminée par la loi de Henry, mais il s'agit alors d'un état d'équilibre instable dit de sursaturation. Dans ce cas la moindre perturbation (choc sur le récipient contenant le liquide, introduction d'une poussière formant un site de nucléation pour les bulles de gaz, fluctuation de pression ou de température, etc.) peut provoquer le dégazage de l'excès de soluté dissout jusqu'à l'établissement de l'état stable dicté par la loi. De même, la quantité du soluté dissout peut être inférieure à celle déterminée par la loi de Henry : il y a sous-saturation. Dans ce cas, si le soluté est présent en phase gaz, la phase liquide absorbe du soluté gazeux jusqu'à atteindre l'équilibre stable. La fraction   déterminée par la loi de Henry est donc la fraction molaire maximale de soluté que peut contenir la phase liquide de façon stable : la fraction   est la solubilité du soluté   dans le solvant   dans les conditions de pression et de température données.

Constante de HenryModifier

Les définitions et formules suivantes ne sont valables que pour un mélange binaire comprenant un unique soluté   et un unique solvant  .

Définition thermodynamiqueModifier

 
Évolution de la fugacité en fonction de la fraction molaire à pression et température constantes[8],[9].

En thermodynamique, à pression et température constantes, la fugacité   d'une espèce chimique   (soluté) en phase liquide, en présence d'une deuxième espèce   (solvant), possède deux limites, avec   la fraction molaire du corps   dans le mélange :

  • à dilution infinie :   ;
  • pour le corps pur :   ;

avec   la fugacité du corps   pur. L'évolution de la fugacité en fonction de la composition est encadrée par deux lois linéaires[8],[9] :

Loi de Henry - aux faibles concentrations :  
Loi de Lewis et Randall - aux fortes concentrations :  

La constante de Henry   n'est pas la fugacité du soluté   à dilution infinie dans le solvant  . La fugacité   tend vers zéro lorsque   tend vers zéro. Aussi la constante de Henry est-elle définie comme étant la limite lorsque la quantité de soluté   dissout en phase liquide s'annule[4],[10],[11],[12] :

Constante de Henry :   à pression et température constantes.

avec :

  •   la fugacité du soluté   dans le mélange liquide ;
  •   la constante de Henry du soluté   dans le solvant  , aux pression   et température   du mélange ;
  •   la fraction molaire du soluté   dans le mélange liquide ;
  •   la fraction molaire du solvant   dans le mélange liquide ( ).

En application de la règle de L'Hôpital, la constante de Henry peut également être définie par[4],[11],[12] :

Constante de Henry :  

La constante de Henry est donc la pente de la fugacité à dilution infinie.

Contrairement à ce que peut laisser entendre le terme de constante, la constante de Henry dépend de la pression et de la température. En revanche, elle ne dépend pas de la composition du mélange. La constante de Henry   dépend également de la nature du soluté   et du solvant   ; ceci implique qu'elle doit être déterminée pour chaque couple « soluté   - solvant   » et n'est pas valable si l'un de ces deux corps est considéré dans un mélange binaire autre que celui pour lequel elle a été déterminée (par exemple le soluté   avec un solvant autre que le solvant  ).

En pratique, la constante de Henry est déterminée expérimentalement.

Dépendance à la pressionModifier

La fugacité   du soluté   dans le mélange liquide varie en fonction de la pression selon :

 

avec :

  •   le volume de la phase liquide ;
  •   le volume molaire partiel du soluté   dans le mélange liquide ;
  •   la quantité du soluté   dans le mélange liquide ;
  •   la quantité du solvant   dans le mélange liquide.

Quelle que soit la fraction molaire   du soluté  , la dérivée partielle étant effectuée à composition constante, on peut écrire :

 

En passant à la limite de la dilution infinie :

 

La référence à la composition constante disparait dans la dérivée partielle de la constante de Henry, puisque celle-ci ne dépend pas de la composition. On pose pour le volume molaire partiel[13] :

Volume molaire partiel du soluté à dilution infinie :  

La constante de Henry dépend par conséquent de la pression selon[13],[14] :

Dépendance de la constante de Henry à la pression
 

avec :

  •   la pression ;
  •   la température ;
  •   le volume molaire partiel du soluté   à dilution infinie dans le solvant   ;
  •   la constante universelle des gaz parfaits.

En intégrant cette relation entre une pression de référence   et la pression   :

 

La pression de référence   est le plus souvent prise égale à la pression de vapeur saturante du solvant   à la température   du mélange :  . En conséquence, on peut réduire la constante d'intégration à une fonction de la température seule :  . La constante de Henry est alors exprimée sous la forme[14],[15],[16] :

 

avec le facteur de Poynting[15],[16] :

Facteur de Poynting :  

Le volume molaire partiel   représente la variation de volume de la solution liquide due à la dissolution d'une mole de soluté   dans une quantité infinie de solvant  . Il peut être déterminé expérimentalement par extrapolation de   établi pour plusieurs concentrations de soluté dans le mélange liquide ; il existe également des corrélations telles que celle de Brelvi-O'Connell[17]. Les liquides étant peu compressibles, le volume molaire partiel   peut être considéré comme ne dépendant pas de la pression, soit  , on obtient :

 

Il peut être aussi bien positif (la dissolution du gaz provoque une dilatation du liquide) que négatif (la dissolution du gaz provoque une contraction du liquide). Si le volume molaire partiel   est positif alors la constante de Henry   augmente avec la pression  .

Dépendance à la températureModifier

La fugacité   du soluté   dans le mélange liquide varie en fonction de la température selon :

 

avec :

  •   l'enthalpie de la phase liquide ;
  •   l'enthalpie molaire partielle du soluté   dans le mélange liquide ;
  •   l'enthalpie molaire du soluté   à l'état de gaz parfait pur à   ;
  •   la quantité du soluté   dans le mélange liquide ;
  •   la quantité du solvant   dans le mélange liquide.

Quelle que soit la fraction molaire   du soluté  , la dérivée partielle étant effectuée à composition constante, on peut écrire :

 

En passant à la limite de la dilution infinie :

 

La référence à la composition constante disparait dans la dérivée partielle de la constante de Henry, puisque celle-ci ne dépend pas de la composition. On pose pour l'enthalpie molaire partielle[13],[18] :

Enthalpie molaire partielle à dilution infinie du soluté   :  

c'est-à-dire l'enthalpie molaire partielle du soluté   à dilution infinie dans le solvant   liquide. L'enthalpie molaire du gaz parfait pur   ne dépendant pas de la composition, elle reste inchangée lors du passage à la limite et on obtient :

 

on pose pour les enthalpies molaires partielles[13],[18] :

Enthalpie de dissolution :  

avec :

  •   l'enthalpie molaire partielle du soluté   à dilution infinie dans le solvant   liquide à   ;
  •   l'enthalpie molaire du soluté   à l'état de gaz parfait pur à  .

La constante de Henry dépend par conséquent de la température selon[13],[18] :

Dépendance de la constante de Henry à la température
 

avec :

  •   la pression ;
  •   la température ;
  •   l'enthalpie de dissolution[19] du soluté   dans le solvant   à   ;
  •   la constante universelle des gaz parfaits.

Si l'on considère l'enthalpie de dissolution   comme constante, alors, en intégrant cette relation entre une température de référence   et la température   :

 
 

Cette forme n'est applicable que sur des plages de température relativement étroites. Elle est généralisée au moyen de deux constantes   et   empiriques spécifiques du couple « soluté   - solvant   »[20] :

 

La littérature utilise parfois l'inverse de la constante de Henry définie précédemment,   (cette notation prête à confusion avec celle de l'enthalpie de dissolution  [7]), aussi trouve-t-on également les relations[7] :

 
 
 

L'enthalpie de dissolution   est la chaleur produite par la dissolution d'une mole de soluté   à l'état de gaz parfait pur dans une quantité infinie de solvant   à l'état liquide. Elle est déterminée expérimentalement par calorimétrie en extrapolant la chaleur de dissolution d'une mole de soluté dans plusieurs quantités de solvant. On peut considérer l'enthalpie molaire partielle d'un corps dans un mélange liquide, ici  , comme indépendante de la pression, les liquides étant peu compressibles. De même, en vertu de la deuxième loi de Joule, l'enthalpie molaire d'un gaz parfait, ici  , ne dépend pas de la pression. Ainsi, il peut être considéré que l'enthalpie de dissolution ne dépend que de la température :  . Elle peut être négative (dissolution exothermique, l'opération de dissolution dégage de la chaleur), positive (dissolution endothermique, l'opération de dissolution absorbe de la chaleur) ou nulle (dissolution athermique). Pour la plupart des gaz à température ambiante la dissolution est exothermique, soit  , par conséquent   augmente avec une diminution de   et la constante de Henry   augmente avec la température  .

Forme usuelle de la constante de HenryModifier

La constante de Henry est souvent utilisée sous la forme obtenue par intégration par rapport à la pression[16] :

Forme usuelle de la constante de Henry
 

La correction de Poynting ne devient significative qu'aux hautes pressions. Pour des pressions de l'ordre de grandeur de la pression atmosphérique, le facteur de Poynting est négligeable :  . La constante de Henry est alors approchée par :

Aux basses pressions :  

La forme suivante est souvent utilisée pour la dépendance à la température[20] :

 

avec  ,  ,   et   des constantes empiriques spécifiques du couple « soluté   - solvant   ». L'enthalpie de dissolution est alors exprimée sous la forme :

 

Démonstration de la loi de HenryModifier

Lorsque l'équilibre liquide-vapeur est atteint, les fugacités du soluté   sont homogènes entre les deux phases :

 

avec :

  •   la fugacité du soluté   en phase gaz (vapeur) ;
  •   la fugacité du soluté   en phase liquide.

Aux basses pressions (moins de 10 bar), le gaz se comporte comme un mélange de gaz parfaits, et la fugacité du soluté   en phase gaz peut être assimilée à sa pression partielle :

 

D'autre part, par définition, aux faibles concentrations la fugacité du soluté   dans le solvant   en phase liquide suit approximativement la loi linéaire :

 

Ainsi, aux basses pressions et aux faibles concentrations, l'équilibre liquide-vapeur du soluté   est approché par la relation :

 

qui est la loi de Henry. Aux fortes concentrations, la fugacité en phase liquide suit approximativement la loi de Lewis et Randall : aux basses pressions et aux fortes concentrations ceci conduit à la loi de Raoult qui s'applique aux solvants.

Limites de la loi de HenryModifier

Conditions de pressionModifier

La loi de Henry n'est valable que si la phase gaz peut être considérée comme un mélange de gaz parfaits. Autrement dit, elle ne s'applique qu'à des pressions partielles de soluté de l'ordre de la pression atmosphérique (moins de 10 bar), dans le domaine d'application de la loi des gaz parfaits[21].

Composition de la phase liquideModifier

Concentration du soluté

La loi de Henry est une loi limitante qui ne s'applique qu'aux solutions suffisamment diluées. La gamme de concentrations à laquelle elle s'applique se restreint à mesure que le système diverge par rapport au comportement idéal ; pour faire simple, cela signifie à mesure que le soluté a un comportement chimiquement différent du solvant. Typiquement, la loi de Henry s'applique uniquement si la fraction molaire   du soluté est inférieure à 0,03[21] ou 0,05[3].

Présence d'autres solutés

La loi de Henry est établie pour un soluté unique dissout dans un solvant unique. Si le solvant contient plusieurs solutés la constante de Henry est modifiée et dépend de la composition. Ainsi la solubilité d'un gaz dans l'eau de mer est-elle inférieure à celle dans l'eau douce en raison de la compétition entre le gaz dissout et les sels dissouts. La constante de Henry pourra être corrigée selon l'équation empirique de Setchenov[7],[22] :

Équation de Setchenov :  

avec :

  •   la constante de Henry du soluté   dans le solvant   en solution avec tous les solutés ;
  •   la constante de Henry du soluté   dans le solvant   en solution avec   seul ;
  •   le coefficient de Setchenov, qui dépend des solutés et du solvant ;
  •   la force ionique ; on trouve aussi cette équation exprimée en fonction de la molalité des sels dissouts[7].
Dissolution réactive

La loi de Henry s'applique uniquement aux solutions dans lesquelles le solvant ne réagit pas chimiquement avec le soluté. Un exemple usuel dans lequel le gaz réagit avec le solvant est le dioxyde de carbone (CO2), qui forme partiellement, par réaction avec l'eau, de l'acide carbonique (H2CO3), qui lui-même, en fonction du pH de l'eau, forme les ions hydrogénocarbonate (HCO3) et carbonate (CO32−). En conséquence, plus le pH de l'eau est basique, plus l'on peut dissoudre de dioxyde de carbone dans l'eau.

Cas des solvants, loi de RaoultModifier

Un solvant   est un corps présent dans une solution liquide ayant une fraction molaire très supérieure à celle d'un soluté  , soit  . Ce corps peut quasiment être considéré comme pur, soit  .

La relation de Duhem-Margules implique que si un soluté suit la loi de Henry, alors le solvant suit la loi de Raoult qui relie sa pression partielle   en phase gazeuse à sa fraction molaire   en phase liquide à l'équilibre liquide-vapeur selon :

Loi de Raoult :  

avec :

  •   la pression totale du mélange ;
  •   la pression partielle du solvant  , par définition   ;
  •   la pression de vapeur saturante du composé   à la température   du mélange ;
  •   le facteur de Poynting appliqué au solvant   ;
  •   le volume molaire du solvant   liquide pur ;
  •   la fraction molaire du solvant   dans la phase vapeur ;
  •   la fraction molaire du solvant   dans la phase liquide.

La relation de Duhem-Margules induit également que si l'on néglige la correction de Poynting pour le soluté, alors elle est également négligeable pour le solvant, soit  .

Extension aux équilibres de mélanges réelsModifier

La loi de Henry constitue une base pour calculer les équilibres liquide-vapeur des mélanges réels, entre autres à des concentrations et des pressions plus fortes que celles données précédemment, à l'aide de facteurs correctifs tels que les coefficients de fugacité   pour la phase gaz et les coefficients d'activité   pour la phase liquide.

Mélanges binairesModifier

On considère un mélange binaire ne comprenant qu'un unique soluté   et un unique solvant  .

Pour le soluté  , l'équilibre liquide-vapeur est calculé par l'extension de la loi de Henry :

Extension de la loi de Henry aux mélanges binaires réels
pour le soluté   :  

Pour le solvant  , l'équilibre liquide-vapeur est calculé par l'extension de la loi de Raoult :

Extension de la loi de Raoult aux mélanges binaires réels
pour le solvant   :  

La fugacité (fictive si le soluté est un gaz)   du soluté   à l'état de liquide pur est donnée par la relation[15] :

 

La fugacité   du soluté   en phase liquide vaut :

 

En supposant que le volume molaire   ne dépend pas de la pression, on développe le facteur de Poynting   dans l'expression de   :

 

Si le coefficient d'activité suit le modèle de Margules à un paramètre :

 
 

avec   la fraction molaire du solvant   dans la phase liquide (avec  ).

D'autre part, à l'équilibre liquide-vapeur, les fugacités du soluté   en phase vapeur et en phase liquide sont égales :

 

On obtient l'équation de Krichevsky-Ilinskaya[23],[24] :

Équation de Krichevsky-Ilinskaya
 

que l'on trouve aussi, en écrivant le modèle de coefficient d'activité selon  , sous la forme[25],[26],[27] :

Équation de Krichevsky-Ilinskaya
 

Si le mélange liquide est idéal, soit   (d'où  ), on obtient l'équation de Krichevsky–Kasarnovsky[14],[24],[28],[29] :

Équation de Krichevsky–Kasarnovsky
 

L'équation de Krichevsky-Kasarnovsky ne s'emploie que pour de faibles concentrations de soluté, l'équation de Krichevsky-Ilinskaya est valable pour des concentrations plus fortes. Pour des pressions proches de la pression atmosphérique (moins de 10 bar) le gaz se comporte comme un gaz parfait, la fugacité du soluté   en phase vapeur est alors égale à sa pression partielle :  . Pour des pressions plus importantes, la fugacité du soluté   en phase gaz est calculée à l'aide d'un coefficient de fugacité :  . Les équations de Krichevsky-Ilinskaya et Krichevsky-Kasarnovsky sont appliquées notamment pour calculer des solubilités à haute pression, jusqu'à 1 000 bar[28],[30].

Mélanges multicomposantsModifier

Soit un mélange liquide composé de plusieurs solutés, notés  , et plusieurs solvants, notés   ou  , aux pression   et température  . L'état de référence pour un soluté est le soluté infiniment dilué dans un mélange ne contenant que les solvants du mélange. Les propriétés de cet état sont établies sur base des propriétés des mélanges binaires soluté-solvant, on pose[31] :

  • pour tout soluté   :   ;
  • pour tout solvant   :  .

Les sommes   sont effectuées sur l'ensemble des solvants du mélange, de même que la somme   est effectuée sur l'ensemble des solutés du mélange. En présence d'un unique solvant   :

  •   pour tout soluté   ;
  •  , soit  .

Dans un mélange liquide constitué uniquement de solvants, donc en l'absence de tout soluté, on a également   pour tout solvant  .

Pour un soluté  , l'équilibre liquide-vapeur est calculé par l'extension de la loi de Henry[31] :

Extension de la loi de Henry aux mélanges multicomposants réels
pour un soluté   :  

Pour un solvant  , l'équilibre liquide-vapeur est calculé par l'extension de la loi de Raoult[31] :

Extension de la loi de Raoult aux mélanges multicomposants réels
pour un solvant   :  

Comme pour un mélange binaire, la fugacité (fictive pour les gaz)   du soluté   à l'état de liquide pur est supposée calculée selon la relation :

 

avec :

  •   la constante de Henry du soluté   dans le mélange liquide ;
  •   le coefficient d'activité du soluté   à dilution infinie dans le mélange liquide.

En supposant que le mélange liquide est idéal, soit   pour tout soluté   et tout solvant  , on a pour tout soluté  [31] :

Équation de Krichevsky
 

et pour tout solvant   :

 

Pour des pressions proches de la pression atmosphérique (moins de 10 bar) le gaz se comporte comme un gaz parfait, soit  , on a par conséquent les lois idéales :

Loi de Henry étendue aux mélanges multicomposants idéaux
pour un soluté   :  

et :

Loi de Raoult étendue aux mélanges multicomposants idéaux
pour un solvant   :  

ApplicationsModifier

Étude de la solubilitéModifier

La loi de Henry permet d'établir l'évolution de la solubilité   en fonction de la pression et de la température dans ses limites d'application, pour rappel aux basses pressions et faibles solubilités.

En fonction de la pressionModifier

En dérivant, à température constante, l'expression de la loi de Henry par rapport à la pression, on obtient :

 

avec   le volume molaire partiel du soluté   à dilution infinie dans le solvant   (voir le paragraphe Constante de Henry - Dépendance à la pression).

Cas de la pression partielle constante

Si la pression partielle   du soluté est maintenue constante et que l'on fait varier la pression totale   par l'intermédiaire d'un tiers corps gazeux incondensable (non soluble dans le liquide), alors :

 

En conséquence, si   est positif, c'est-à-dire si le volume du liquide augmente lors d'une dissolution de soluté  , la solubilité   diminue si la pression totale   augmente à pression partielle   du soluté constante.

Cas du soluté seul en phase gaz

Si le soluté est seul en phase gaz, en l'absence d'inerte et le solvant   n'étant pas volatil, la pression partielle   du soluté est égale à la pression totale  , soit  , alors :

 

En application de la loi des gaz parfaits, aux basses pressions le volume molaire de la phase gaz vaut :  . D'autre part, toujours aux basses pressions, le volume molaire de la phase gaz est très supérieur à celui d'un volume molaire partiel en phase liquide, soit  , d'où :

Aux basses pressions :  

Aux basses pressions, la solubilité   augmente avec la pression totale   lorsque le soluté   est seul en phase gaz.

Le volume molaire d'un gaz diminue avec la pression. On peut considérer que le volume molaire partiel en phase liquide   est indépendant de la pression. Aux pressions élevées, lorsque le modèle des gaz parfaits ne s'applique plus, on considère l'équation de Krichevsky-Kasarnovsky (voir le paragraphe Mélanges binaires) lorsque la phase liquide a un comportement idéal. Si seul le soluté   se trouve en phase gaz, sa fugacité dans cette phase varie en fonction de la pression selon :

 

avec   le volume molaire du soluté pur à l'état gazeux dans les conditions de pression et température du mélange. L'équation de Krichevsky-Kasarnovsky donne par conséquent[32],[33] :

Aux hautes pressions :  

Lorsque  , aux basses pressions, la solubilité augmente avec la pression, elle décroît lorsque   aux très hautes pressions (lorsque le volume molaire de la phase gaz est faible). Ainsi, lorsque   la solubilité   atteint un maximum en fonction de la pression. Ceci a été vérifié expérimentalement pour la solubilité de l'azote dans l'eau, qui atteint à 18 °C un maximum à environ 3 000 atm[32],[33].

En fonction de la températureModifier

 
Solubilité du dioxyde de carbone dans l'eau en fonction de la température à pression atmosphérique[34].

En dérivant, à pression constante, l'expression de la loi de Henry par rapport à la température, on obtient :

 

avec   l'enthalpie de dissolution du soluté   dans le solvant   (voir le paragraphe Constante de Henry - Dépendance à la température).

Que la pression partielle   du soluté soit maintenue constante, ou que la phase gaz soit constituée du soluté   seul, auquel cas  , on obtient :

 

Aux basses pressions et températures, pour la plupart des gaz la dissolution est exothermique, soit  , par conséquent la solubilité diminue lorsque la température augmente[18]. De nombreux gaz présentent un minimum de solubilité, la solubilité augmentant après avoir diminué lorsque la température augmente[35],[36]. Ainsi, aux basses pressions, le minimum de solubilité de l'hélium dans l'eau se situe à environ 30 °C, ceux de l'argon, de l'oxygène et de l'azote se situent entre 92 et 93 °C et celui du xénon à environ 114 °C[37].

Pressurisation des boissons gazeusesModifier

 
En ouvrant une bouteille de champagne la pression chute brutalement dans la bouteille et, selon la loi de Henry, la solubilité du gaz diminue. Le dioxyde de carbone (CO2) dissout dans le vin se désorbe instantanément et forme des bulles dans le liquide.

Les boissons gazeuses sont maintenues sous une pression importante de dioxyde de carbone (CO2). On suppose qu'il n'y a que du CO2 dans le gaz, la pression partielle vaut alors la pression totale :  . Cette pression permet de dissoudre une grande quantité de gaz dans le liquide.

En ouvrant la bouteille la pression   dans celle-ci chute brusquement. En vertu de la loi de Henry,  , si   diminue, puisque   est quasi constante, alors   ne peut que diminuer : la solubilité du dioxyde de carbone chute. En conséquence, le CO2 dissout se désorbe en formant des bulles dans le liquide[5],[38].

Solubilité des gaz atmosphériques dans le sangModifier

Les teneurs en oxygène et azote dissouts dans le sang répondent à la loi de Henry et dépendent directement de leurs pressions partielles dans l'atmosphère.

En altitude, par exemple en montagne, la pression atmosphérique est plus basse qu'au niveau de la mer. La composition en oxygène y est identique (environ 20,9 %), mais sa pression partielle est plus faible. En conséquence la teneur en oxygène dans le sang est plus basse en montagne qu'à des altitudes moins élevées. Cet état est appelé hypoxie et peut provoquer le mal aigu des montagnes si ces altitudes sont atteintes trop rapidement, sans acclimatation progressive (par exemple à l'atterrissage en montagne d'un avion parti du niveau de la mer)[39].

Au contraire, sous l'eau la pression est plus importante qu'au niveau de la surface. En un point où la pression est le double de la pression atmosphérique standard (c'est le cas à 10 m de profondeur), la solubilité de chaque gaz est doublée par rapport à la surface. Un plongeur consomme l'oxygène mais stocke l'azote de l'air dissout dans son organisme. Lorsque le plongeur remonte vers la surface l'azote se désorbe en raison de la baisse de pression. Un accident de décompression survient si la remontée est trop rapide : le plongeur ne peut évacuer ce gaz par la respiration et l'azote forme des bulles dans le sang. Les bulles ainsi créées se dilatent dans les vaisseaux sanguins, toujours en raison de la baisse de pression (loi de Boyle-Mariotte), et peuvent provoquer une embolie gazeuse et le décès du plongeur[5],[40].

Constantes de Henry pour des gaz dissouts dans l'eauModifier

Le tableau suivant donne quelques valeurs de la constante de Henry pour des gaz dissouts dans l'eau à 25 °C (298,15 K)[7].

Valeurs de la constante de Henry
pour des gaz dissouts dans l'eau à 298,15 K[7].
Équation        
Unité       sans dimension
Oxygène (O2) 769,23 1,3×10−3 4,259×104 3,181×10-2
Hydrogène (H2) 1282,05 7,8×10-4 7,099×104 1,907×10-2
Dioxyde de carbone (CO2) 29,41 3,4×10-2 0,163×104 0,8317
Azote (N2) 1639,34 6,1×10-4 9,077×104 1,492×10-2
Hélium (He) 2702,7 3,7×10-4 14,97×104 9,051×10-3
Néon (Ne) 2222,22 4,5×10-4 12,30×104 1,101×10-2
Argon (Ar) 714,28 1,4×10-3 3,955×104 3,425×10-2
Monoxyde de carbone (CO) 1052,63 9,5×10-4 5,828×104 2,324×10-2

Avec :

  •   la concentration du gaz en solution aqueuse (mol/l) ;
  •   la concentration du gaz en phase vapeur (mol/l) ;
  •   la pression partielle du gaz en phase vapeur (atm) ;
  •   la fraction molaire du gaz en solution aqueuse (sans dimension).

NotationsModifier

Alphabet latin
  •   le paramètre du modèle d'activité de Margules ;
  •   la fugacité du soluté   en phase vapeur ;
  •   la fugacité du soluté   en phase liquide ;
  •   la fugacité du soluté   liquide pur ;
  •   l'enthalpie molaire partielle du soluté   à dilution infinie dans le solvant   ;
  •   l'enthalpie molaire du soluté   à l'état de gaz parfait pur ;
  •   la constante de Henry du soluté   dans le solvant   ;
  •   la constante de Henry du soluté   dans le solvant   à   ;
  •   la constante de Henry du soluté   dans un mélange liquide multicomposants ;
  •   la pression ;
  •   la pression de vapeur saturante du solvant   ;
  •   le facteur de Poynting appliqué au soluté   ;
  •   le facteur de Poynting appliqué au solvant   ;
  •   la pression partielle du soluté   ;
  •   la constante universelle des gaz parfaits ;
  •   la température ;
  •   le volume molaire du soluté   gazeux pur ;
  •   le volume molaire partiel du soluté   dans le mélange liquide ;
  •   le volume molaire partiel du soluté   à dilution infinie dans le solvant   ;
  •   le volume molaire du solvant   liquide pur ;
  •   la fraction molaire du soluté   en phase gaz ;
  •   la fraction molaire du soluté   en phase liquide ;
  •   la fraction molaire du solvant   en phase gaz ;
  •   la fraction molaire du solvant   en phase liquide.
Alphabet grec
  •   le coefficient d'activité du soluté   en phase liquide ;
  •   le coefficient d'activité du soluté   à dilution infinie dans un mélange multicomposants ;
  •   le coefficient d'activité du soluté   à dilution infinie dans le solvant   ;
  •   le coefficient d'activité du solvant   en phase liquide ;
  •   un paramètre de la loi de Raoult étendue aux mélanges multicomposants ;
  •   l'enthalpie de dissolution du soluté   dans le solvant   ;
  •   le coefficient de fugacité du soluté   en phase gaz ;
  •   le coefficient de fugacité du solvant   en phase gaz ;
  •   le coefficient de fugacité du solvant   pur en phase gaz à  .

Notes et référencesModifier

NotesModifier

  1. (en) William Henry, « Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures », Philosophical Transansactions of the Royal Society of London, vol. 93,‎ , p. 29–274 (DOI 10.1098/rstl.1803.0004).
  2. a et b Peter William Atkins et Paul Depovere (trad. de l'anglais par Monique Mottet), Éléments de chimie physique, Paris, Bruxelles, De Boeck Supérieur, , 512 p. (ISBN 2-7445-0010-0, lire en ligne), p. 133
  3. a b c et d Henri Fauduet, Principes fondamentaux du génie des procédés et de la technologie chimique, Lavoisier, , 2e éd., 800 p. (ISBN 9782744500107, lire en ligne), p. 164.
  4. a b et c (en) Quantities, Units and Symbols in Physical Chemistry (Green Book), Cambridge, Union internationale de chimie pure et appliquée, , 3e éd. (1re éd. 1988), 250 p. (ISBN 978-0-85404-433-7, présentation en ligne, lire en ligne [PDF]), p. 58.
  5. a b et c John C. Kotz et Paul M. Treichel Jr (trad. de l'anglais), Chimie des solutions, Bruxelles/Issy-les-Moulineaux, De Boeck Supérieur, coll. « Chimie générale », , 356 p. (ISBN 978-2-8041-5232-1, lire en ligne), p. 20.
  6. Johan Wouters, Concentré de CHIMIE, Presses universitaires de Namur, , 398 p. (ISBN 9782870378526, lire en ligne), p. 134.
  7. a b c d e f et g (en) « Henry's law constants » (consulté le 10 janvier 2020). Une compilation de constantes de Henry pour les solutions aqueuses, dont : (en) « Compilation of Henry’s law constants (version 4.0) for water as solvent » [PDF], sur Atmospheric Chemistry and Physics (consulté le 10 janvier 2020).
  8. a et b O'Connell 2005, p. 435.
  9. a et b Jean-Pierre-Corriou, Thermodynamique chimique : Diagrammes thermodynamiques, vol. J 1 026, Éditions techniques de l'ingénieur, (lire en ligne), p. 25-26.
  10. Vidal 1997, p. 168.
  11. a et b Tosun 2012, p. 450.
  12. a et b Wilhelm 2012, p. 65.
  13. a b c d et e Wilhelm 2012, p. 70.
  14. a b et c Tosun 2012, p. 462.
  15. a b et c Corriou 1985, p. 4.
  16. a b et c Coquelet et al. 2007, p. 6.
  17. (en) S. W. Brelvi et J. P. O'Connell, « Corresponding States Correlations for Liquid Compressibility and Partial Molal Volumes of Gases at Infinite Dilution in Liquids », AIChE Journal, vol. 18, no 6,‎ , p. 1239-1243 (lire en ligne, consulté le 10 janvier 2020).
  18. a b c et d Tosun 2012, p. 466.
  19. L'indice   est préconisé par le Green Book 2007, p. 60.
  20. a et b (en) John J. Caroll, « Henry's Law Revisited », Chemical Engineering Progress,‎ , p. 54 (lire en ligne [PDF], consulté le 10 janvier 2020).
  21. a et b Prausnitz et al. 1999, p. 586.
  22. Marc Blétry et Marc Presset, Chimie des solutions : De l'élémentaire aux calculs numériques, Louvain-la-Neuve, De Boeck Superieur, , 480 p. (ISBN 978-2-8073-2305-6, lire en ligne).
  23. Tosun 2012, p. 465.
  24. a et b Wilhelm 2012, p. 75.
  25. Prausnitz et al. 1999, p. 592.
  26. Drew et al. 1968, p. 169.
  27. (en) Alice Wu, John J. Carroll, Mingqiang Hao et Weiyao Zhu, Gas Injection into Geological Formations and Related Topics, John Wiley & Sons, , 384 p. (ISBN 9781119593331, lire en ligne), p. 67.
  28. a et b Drew et al. 1968, p. 167.
  29. Prausnitz et al. 1999, p. 589.
  30. Prausnitz et al. 1999, p. 590.
  31. a b c et d Van Ness et al. 1979.
  32. a et b (en) I. R. Krichevsky, « The Existence of a Maximum in the Gas Solubility—Pressure Curve », J. Am. Chem. Soc., vol. 59, no 3,‎ , p. 595–596 (lire en ligne, consulté le 24 août 2020).
  33. a et b Drew et al. 1968, p. 168-169.
  34. Ce graphe et d'autres exemples sur : (en) « Solubility of Gases in Water », sur engineeringtoolbox.com (consulté le 9 mai 2020).
  35. (en) Thomas B. Drew, Giles R. Cokelet, John W. Hoopes et Theodore Vermeulen, Advances in Chemical Engineering, vol. 11, Academic Press, , 451 p. (ISBN 9780080565583, lire en ligne), p. 23.
  36. (en) Nobuo Maeda, Nucleation of Gas Hydrates, Springer Nature, (ISBN 9783030518745, lire en ligne), p. 135.
  37. (en) Paul Cohen, The ASME Handbook on Water Technology for Thermal Power Systems, The American Society of Mechanical Engineers, , 1828 p. (ISBN 978-0-7918-0634-0, lire en ligne), p. 442.
  38. Gérard Liger-Belair, Clara Cilindre, Marielle Bourget, Hervé Pron, Fabien Beaumont, Guillaume Polidori, Philippe Jamesse, Miguel Cabral et Paulo Lopes, « La perception du CO2 dans les vins effervescents : Un univers multisensoriel spécifique et ses influences sur les sensations gustatives - Apports possibles des neurosciences », Revue des Œnologues, vol. 155,‎ , p. 47-52 (lire en ligne, consulté le 15 décembre 2020).
  39. Samuel Vergès, « Quelles réponses au manque d'oxygène en altitude ? », sur Le Figaro.fr, (consulté le 15 décembre 2020).
  40. Francis Héritier, M. Paul Avanzi et Laurent Nicod, « Poumons et plongée subaquatique », Revue médicale suisse, vol. 451, no 10,‎ , p. 2182-2189 (lire en ligne, consulté le 15 décembre 2020).

BibliographieModifier

Articles
  • (en) Emmerich Wilhelm, « The Art and Science of Solubility Measurements : What Do We Learn? », Netsu Sokutei, vol. 39, no 2,‎ , p. 61-86 (lire en ligne [PDF], consulté le 10 janvier 2020).
  • (en) H. C. Van Ness et M. M. Abbott, « Vapor‐liquid equilibrium. : Part VI. Standard state fugacities for supercritical components. », AIChE J., vol. 25, no 4,‎ , p. 645-653 (lire en ligne, consulté le 9 janvier 2020).
Ouvrages

Articles connexesModifier