Langage rationnel

(Redirigé depuis Langage régulier)

En théorie des langages, les langages rationnels ou langages réguliers ou encore langages reconnaissables peuvent être décrits de plusieurs façons équivalentes :

  • ce sont les langages décrits par les expressions régulières ou rationnelles, d'où le nom de langages réguliers ;
  • ce sont les langages obtenus, à partir des lettres et de l'ensemble vide, par les opérations rationnelles, à savoir l'union, le produit et l'étoile de Kleene, d'où le nom de langages rationnels ;
  • ce sont les langages reconnus par des automates finis, d'où le nom de langages reconnaissables.

Les langages rationnels ont de très nombreuses applications, à la fois théoriques et pratiques. Ils sont utilisés en informatique (par exemple en compilation), en linguistique (par exemple pour décrire la morphologie d'une langue), ils interviennent dans les traitements de texte, ou dans des commandes spécifiques comme grep du système Unix.

Pour la manipulation des langages rationnels et des automates, il existe de nombreux outils informatiques, notamment dans les systèmes du type Unix comme la commande lex. Le langage informatique Java fournit aussi la classe Pattern. Les algorithmes utilisés pour manipuler les langages rationnels possèdent en général une implémentation rapide et efficace.

Définition modifier

On considère un ensemble fini   de caractères ou lettres, appelé alphabet. Une chaîne de caractères (ou chaîne ou mot) est une suite finie, éventuellement vide, de caractères. Par exemple, la chaîne formée de la lettre  , puis de la lettre  , puis encore de la lettre  , se note  .

L'ensemble des mots que l'on peut former avec ces lettres de   est noté  . Toute partie de   s'appelle un langage.

Opérations rationnelles modifier

Les opérations suivantes, définies sur les langages, sont appelées les opérations rationnelles. Soient   et   deux parties de   :

1. la concaténation ou le produit de   et  , noté  , est l'ensemble de mots  , où   est dans   et   est dans  .

Par exemple, le produit de   et de   est  ;

2. l'union ensembliste, de   et  , notée  , est l'ensemble des mots appartenant à   ou à  .

Par exemple, l'union ensembliste de   et de   est  ;

3. l'étoile de Kleene, notée   est le plus petit langage qui contient le mot vide  , le langage  , et qui est clos pour l'opération de concaténation. C'est aussi l'ensemble de tous les produits de tous les mots de  .

Par exemple,  .

Langages rationnels modifier

L'ensemble des langages rationnels sur l'alphabet   est le plus petit ensemble de langages stable pour les opérations rationnelles, et qui contient le langage vide   , les langages réduits à une lettre et le langage composé du mot vide  .

Expressions rationnelles modifier

Les expressions rationnelles sur l'alphabet   sont des expressions obtenues à partir des constantes 0, 1, et de constantes  , pour les lettres   de  , par des opérations suivantes :

  1. L'opération   ou   (pour représenter l'union)
  2. L'opération   (pour représenter le produit, ce point est d'ailleurs souvent omis)
  3. L'opération   (pour représenter l'étoile de Kleene, aussi appelée itération).

Chaque expression rationnelle   dénote un langage rationnel. Ce langage, noté  , est défini comme suit :

  1.  ,  ,   pour chaque lettre  
  2.  ,  ,  

Deux expressions rationnelles sont équivalentes si elles dénotent le même langage.

Dotées d'un opérateur d'addition, d'un opérateur de produit et d'une relation d'équivalence, les expressions rationnelles sont des demi-anneaux, des algèbres de Kleene et des demi-anneaux étoilés complets.

Exemple modifier

Les expressions   et   sont équivalentes.

Variantes modifier

Pour diminuer les parenthèses dans les expressions, on omet les parenthèses résultant de l'associativité des opérations, et de donner la plus haute priorité à l'étoile de Kleene, suivie de la concaténation, puis de l'union. Formellement, cela signifie que l'on identifie des expressions qui se déduisent l'une de l'autre par l'application de ces règles[note 1].

On ajoute parfois aussi, aux opérateurs sur les expressions, la fermeture  , donnant l'expression  . Le langage dénoté est donné par  , au sens de opérateur plus.

En revanche, l'opérateur de complémentation ne fait pas partie des opérations définissant les expressions rationnelles. Par contre, on définit les expressions rationnelles étendues comme les expressions incluant aussi l'opérateur de complémentation.

Dans les expressions régulières fournis par de nombreux outils de programmation ou d'édition, comme Unix, qed, grep, Emacs, d'autres opérateurs sont généralement ajoutés, avec des propriétés qui les rendent capables de décrire des langages qui ne sont pas rationnels. Ces expressions ne sont donc pas strictement équivalentes aux expressions rationnelles définies formellement ci-dessus.

Expressions rationnelles et automates finis modifier

Le théorème de Kleene modifier

Le théorème de Kleene affirme que l'ensemble des langages rationnels sur un alphabet   est exactement l'ensemble des langages sur   reconnaissables par automate fini. C'est le résultat fondamental pour la théorie et les applications.

La correspondance entre langages rationnels et langages reconnaissables est effective : pour toute expression régulière, on peut construire effectivement, et de plusieurs façons, des automates qui reconnaissent le langage dénoté par l'expression. Réciproquement, à tout automate fini on peut associer une expression régulière qui dénote le langage reconnu par l'automate. Là aussi, il y a plusieurs méthodes, et on peut obtenir des expressions différentes, mais équivalentes.

Hauteur d'étoile modifier

La hauteur d'étoile d'une expression rationnelle   est le nombre   défini récursivement comme suit :

  1.   pour toute lettre  
  2.  
  3.  .

En d'autres termes, la hauteur d'étoile d'une expression est le nombre maximum d'étoiles imbriquées. Par exemple,   et  . Ces deux expressions dénotent le même langage, on voit donc que la notion de hauteur d'étoile est liée à l'expression.

La hauteur d'étoile d'un langage rationnel   est le minimum des hauteurs d'étoile des expressions dénotant ce langage, c'est-à-dire

 

La question de l'existence de langages rationnels de hauteur d'étoile arbitrairement grande a été posée par Lawrence C. Eggan et résolue par Françoise Dejean et Marcel-Paul Schützenberger[1]. Le problème de la hauteur d'étoile est de calculer, de manière efficace, la hauteur d'étoile d'un langage rationnel. Ce problème a résisté longtemps. Il a été résolu la première fois en 1982 ; le meilleur algorithme, dû à Kirsten, est de 2005.

Une question qui est toujours ouverte en 2016 concerne le problème de la hauteur d'étoile généralisée (en): si l'on autorise, comme opérateur supplémentaire, l'opérateur de complémentation, le pouvoir de description des expressions rationnelles (appelées généralisées) augmente bien entendu. On ne sait toujours pas s'il existe des langages rationnels de hauteur d'étoile généralisée arbitrairement grande (ni même de hauteur 2). Les langages de hauteur d'étoile généralisée 0 sont les « langages sans étoile » caractérisés par Marcel-Paul Schützenberger.

Le théorème de Myhill-Nerode modifier

À tout langage   de  , on associe une relation d'équivalence   sur   définie de la façon suivante :

  si et seulement si pour tout mot   de  , on a  

Cette relation est une équivalence régulière à droite car elle est compatible avec la concaténation : si   alors  .

Le théorème de Myhill-Nerode affirme qu'un langage   est rationnel si et seulement si la relation   est d'indice fini, c'est-à-dire possède un nombre fini de classes d'équivalence.

Ce théorème a un intérêt théorique puisqu'il donne une caractérisation intrinsèque de l'automate minimal reconnaissant un langage donné. En effet, les états de l'automate fini déterministe minimal reconnaissant un langage rationnel   sont en bijection avec les classes d'équivalence de la relation  [2]. Ce résultat est aussi à la base d'un algorithme efficace de minimisation, appelé l'algorithme de Moore.

Propriétés modifier

Propriétés algébriques modifier

  • Les langages rationnels sont fermés, en plus de l'union, du produit et de l'étoile, par complémentation et donc par intersection.
  • Les langages rationnels sont fermés par image miroir : si   est un langage rationnel, alors   est rationnel, où   est l'ensemble des retournés ou images miroir des mots de  .
  • Pour tout langage rationnel   et tout mot  , le quotient gauche
            
    est un langage rationnel.
  • L'image d'un langage rationnel par un morphisme est un langage rationnel.
  • L'image par un morphisme inverse d'un langage rationnel est un langage rationnel
  • L'image, par une substitution rationnelle, d'un langage rationnel est un langage rationnel (une substitution   de   dans   est une application de   dans l'ensemble des parties de   qui est un morphisme pour la structure de monoïde multiplicatif sur l'ensemble des parties de  , c'est-à-dire   et  , où le produit dans le membre droit est le produit des parties de  . Une substitution rationnelle est une substitution   telle qui   est un langage rationnel sur   pour toute lettre   de  ).
  • Le produit de mélange (en anglais shuffle product) de deux langages rationnels est un langage rationnel (le produit de mélange de deux mots   et   est l'ensemble des mots  , où les   et les   sont des mots, tels que   et  . Le produit de mélange de deux langages est la réunion des produits de mélange des mots des langages).
  • La première moitié d'un langage   est le langage
          .
    En d'autre termes, on coupe au milieu des mots de   de longueur paire et on garde la première partie. Si   est un langage rationnel, alors   est un langage rationnel.
  • Si l'on supprime, dans les mots d'un langage rationnel, une lettre sur deux, le résultat est encore un langage rationnel.

Propriétés décidables modifier

La plupart des questions que l’on pose habituellement pour des langages formels sont décidables pour les langages rationnels, et les démonstrations sont souvent faciles[4]. On suppose que le langage ou les langages sont donnés par des automates finis. Les propriétés sont donc plutôt des propriétés des automates finis, ou simplement des graphes finis sous-jacents. Les propriétés suivantes sont décidables :

  • Un mot donné appartient-il à un langage rationnel : il suffit de tester si le mot est reconnu par l’automate.
  • Le langage rationnel est-il vide : pour cela, on teste si, parmi les états accessibles, figure un état final.
  • Le langage contient-il tous les mots : il suffit de tester si le complémentaire est vide.
  • Le langage est-il fini : pour ce faire, on teste si l'automate, une fois émondé, a un graphe sous-jacent sans circuit.
  • Deux langages rationnels   et   étant donnés, a-t-on l'inclusion  , l'égalité   ?
    L'inclusion   se ramène à tester que langage   est vide, où   est le langage complément de  . Comme ce langage est lui-même rationnel, la décidabilité découle de la deuxième des propriétés ci-dessus. L'égalité équivaut à la double inclusion.

Une question plus difficile concerne la complexité algorithmique de ces problèmes de décision; par exemple, le calcul du complémentaire d'un langage demande la déterminisation de l'automate, et peut donc exiger une place et un temps exponentiel.

Lemme d'itération modifier

Le lemme d'itération (en anglais pumping lemma, traduit parfois malheureusement par lemme de pompage) donne une propriété nécessaire des langages rationnels. Il s'énonce informellement comme suit : dans tout mot assez long   d'un langage rationnel  , on peut trouver un facteur   non vide que l'on peut répéter un nombre arbitraire de fois, tout en restant dans le langage  .

C'est en fait une propriété d'un automate reconnaissant le langage   : un mot assez long reconnu par l'automate contient nécessairement un circuit qui l'on peut parcourir un nombre arbitraire de fois, tout en restant reconnu par l'automate

Ce lemme n'est pas une caractérisation des langages rationnels : il existe des langages qui vérifient la propriété d'itération mais qui ne sont pas rationnels.

Exemples et contre-exemples modifier

Les langages suivants sont rationnels :

  • L'ensemble des notations décimales des entiers naturels sur l'alphabet :  .
  • Tout langage fini.
  • L'ensemble des mots qui contient un mot fixé.
  • L'ensemble des mots qui contiennent un nombre pair de "1".
  • L'ensemble des mots qui sont l'écriture en binaire d'un entier congruent à 2 modulo 5.

Les langages suivants ne sont pas rationnels :

  • L'ensemble de mots  
  • Les ensembles  , 
  • Une expression bien parenthésée est obtenue comme étant soit le mot vide, soit    et   sont bien parenthésées. L'ensemble des expressions bien parenthésées est aussi appelé le langage de Dyck.
    Ce n'est pas un langage rationnel car son intersection avec le langage rationnel   n'est pas un langage rationnel (c'est le langage précédent à un changement de symboles près).
  • L'ensemble des palindromes.

Les langages rationnels sur une seule lettre modifier

Lorsque l'alphabet est composé d'une seule lettre  , on connait une caractérisation précise des langages rationnels. Pour tout langage   de  , on note   l'ensemble des exposants de  , soit

 .

On a alors la propriété suivante :

Un langage   sur   est rationnel si et seulement si son ensemble d'exposant   est la réunion d'un ensemble fini de progressions arithmétiques.

Une progression arithmétique est un ensemble de la forme  . Dans cette définition, la raison   est positive ou nulle; quand elle est nulle, la progression est réduite au singleton   ; on autorise aussi   à être plus grand que  . Par exemple, il existe un langage rationnel sur une lettre dont l'ensemble des exposants est la réunion des entiers pairs plus grand que 10, et des entiers 3 et 5. Ce langage est  .

Pour démontrer que le langage rationnel de l'énoncé a bien la forme indiquée, on considère un automate fini déterministe complet qui reconnaît  . Soit   son état initial, et soit

 

l'état atteint après la lecture de   lettres. La suite d'états

 

est ultimement périodique; en effet, l'automate n'a qu'un nombre fini d'états, donc il existe des entiers   et   tels que  , et alors   pour tout  . Soit   le plus petit indice tel que   apparaît deux fois, et donc une infinité de fois, dans la suite des états, et soit   le plus petit entier tel que  . L'ensemble des mots qui amènent l'état initial   sur l'état   est égal au singleton   si  , et est égal à   sinon. Dans les deux cas, l'ensemble des exposants est une progression arithmétique. Comme le langage reconnu est une réunion de langages de ce type, il est de la forme annoncée. La réciproque se démontre tout simplement : chaque langage de la forme   est visiblement rationnel, et une réunion finie de langages de cette forme l'est encore.

Dans cette preuve, on utilise les expressions rationnelles dans une des directions, et la structure de l'automate fini dans l'autre[note 2].

Nombre de mots de longueur donnée dans un langage rationnel modifier

Pour un langage rationnel   donné, notons   le nombre de mots de longueur   de  . Par exemple, si   est l'ensemble des mots sur deux lettres   ne contenant pas deux   consécutifs, on a

 

et la suite des nombres de mots est

 .

C'est en fait la suite des nombres de Fibonacci.

La série génératrice de la suite des longueurs est la série

 .

Dans l'exemple, c'est la série

 .

L'observation importante est que la série génératrice des longueurs, pour un langage rationnel, est toujours une fraction rationnelle. La suite des longueurs vérifie donc une relation de récurrence linéaire à coefficients constants. La série et la relation de récurrence sont effectivement calculables.

Le fait que la série reste rationnelle peut être exploité pour montrer que certains langages ne sont pas rationnels. Par exemple, pour le langage de Dyck sur une paire de parenthèses, le nombre de mots de longueur   est le  -ième nombre de Catalan, et la série génératrice des nombres de Catalan n'est pas rationnelle.

 
Automate de Fibonacci.

Soit   un automate fini sur un alphabet A reconnaissant un langage   donné. Pour simplifier les notations, on suppose que  . On note   le langage des mots   qui sont étiquettes de chemins de   à  , de sorte que

 .

Pour l'exemple de l'automate de Fibonacci, on a  . On suppose maintenant que l'automate   est déterministe - ou inambigu - et on note

 .

C'est donc le nombre de mots de longueur   qui sont étiquettes de chemins de   à j. Il en résulte que le nombre de mots de longueur   du langage   est

 .

Pour l'exemple de l'automate de Fibonacci, on a  . Les nombres   sont des coefficients d'une matrice associée naturellement à l’automate  . Soit   la matrice d'ordre   définie par

 .

Le nombre   est le nombre de transition de   à  ; on a donc   avec les notations précédentes. Pour l'exemple de l'automate de Fibonacci, on a

 

Il est facile de vérifier que, parce que l’automate est déterministe ou inambigu, les coefficients de la puissance  -ième de   sont précisément le nombre de mots de longueur   entre les états, soit

 .

Le nombre de mots de longueur   du langage est la somme des coefficients indicés par l'état initial et les états terminaux. Pour l'exemple de l'automate de Fibonacci, on a

 

et plus généralement

 ,

  est le  -ième nombre de Fibonacci. Enfin, comme toute matrice, la matrice   vérifie le théorème de Cayley-Hamilton, les suites   vérifient toutes la même relation de récurrence. Pour l'exemple de l'automate de Fibonacci, on a  , où   est la matrice identité.

Autres caractérisations modifier

Les langages rationnels sont aussi :

Généralisation aux monoïdes quelconques modifier

Les parties rationnelles et les parties reconnaissables peuvent être définis dans tout monoïde. La contrepartie est qu'en général, le théorème de Kleene n'y est pas vérifié, c'est-à-dire que toute partie reconnaissable n'est pas nécessairement rationnelle et vice-versa.

Dans un monoïde  , l'ensemble des parties rationnelles est défini comme dans le cas de l'ensemble des mots  : c'est la plus petite famille, au sens de l'inclusion, de parties de   qui contient l'ensemble vide   et les singletons, et est stable par toutes les opérations rationnelles. Il est à noter que l'opération étoile revient à prendre le sous-monoïde engendré par la partie: ainsi,   est le monoïde engendré par l'élément  .

Pour ce qui est des parties reconnaissables, la définition par automates n'est plus appropriée car rien ne permet d'écrire un élément de   comme produit d'éléments minimaux (les lettres dans le cas de  ). On utilise alors une définition équivalente, et qui peut être généralisée à tous les monoïdes. Une partie   de   est reconnue par un monoïde   s'il existe un morphisme de monoïdes   de   sur   et une partie   de   tels que  . Une partie reconnaissable de   est alors une partie reconnue par un monoïde   fini.

Cette définition est bien équivalente à la première pour l'ensemble des mots. Si   est un langage rationnel, alors   est reconnu par son monoïde syntaxique (il suffit de prendre pour   la projection canonique et pour   l'ensemble des classes d'équivalence incluses dans  ). Réciproquement, si   est un langage reconnu par un monoïde fini  , alors l'automate   où:

  •   est l'élément neutre de  ;
  •   est défini pour tout   et   par:  

reconnaît  . En effet, par hypothèse, on a  , et un mot   est accepté si et seulement si  , donc si et seulement si   appartient à  .

Le théorème de Kleene ne s'applique plus dans le cas général de monoïdes quelconques. Ainsi, une partie rationnelle pourra ne pas être reconnaissable et vice-versa. Néanmoins, on dispose d'un théorème dû à McKnight, qui recouvre une partie du théorème de Kleene et s'énonce ainsi: toute partie reconnaissable d'un monoïde   est rationnelle si et seulement si   admet une famille génératrice finie, c'est-à-dire est finiment engendrée.

Histoire modifier

La théorie débute dans les années 1940[note 3]. Warren McCulloch et Walter Pitts ont décrit, en 1943, le système nerveux en modélisant les neurones par des automates simples. Le logicien Stephen Cole Kleene a ensuite prouvé, en 1956, ce que l'on appelle le théorème de Kleene[9],[note 4]. En 1956, Edward F. Moore publie son algorithme de minimisation. En 1958, Anil Nerode et John Myhill publient leur caractérisation. En 1959, Michael Rabin et Dana Scott donnent, dans un célèbre article[10], un traitement rigoureux de la théorie des automates. Cet exposé pionnier leur vaut le prix Turing.

Du point de vue pratique, c'est Ken Thompson[note 5] qui implémente les expressions rationnelles dans l'éditeur qed, puis l'éditeur ed sous Unix, et finalement dans grep. Depuis lors, les expressions rationnelles ont été largement utilisées dans les utilitaires tels que lex ainsi que dans les langages de programmation nés sous Unix, tels que expr, awk, Perl, Python… Une bonne partie d'entre eux reposent sur la bibliothèque regex, créée par Henry Spencer.

Voir aussi modifier

Notes et références modifier

Notes modifier

  1. Pour une définition précise des règles de simplification, on peut consulter Sakarovitch (2003)
  2. Pour des détails supplémentaires, on peut consulter Sakarovitch (2003). L'énoncé se trouve à la page 117, c'est la Proposition I.3.3.
  3. Pour un exposé des premières années de la théorie des automates et des langages rationnels, voir Perrin (1995)
  4. P.46, Kleene introduit la notion d’événement régulier (regular event), pour ce qui a été appelé plus tard ensemble régulier ou langage régulier et demande qu'on lui suggère un terme plus descriptif ! La définition des événements réguliers est p. 48.
  5. Notons qu'il a lui aussi reçu le prix Turing.

Références modifier

  1. Dejean et Schützenberger (1966)
  2. voir par exemple Hopcroft et Ullman 1979 ou Carton (2008) ou Sakarovitch (2003)
  3. Petazzoni, Bruno, Seize problèmes d'informatique, p. 73
  4. Hopcroft et Ullman 1979, p. 40.
  5. (en) J. Richard Büchi, « Weak Second-Order Arithmetic and Finite Automata », Mathematical Logic Quarterly, vol. 6, nos 1-6,‎ , p. 66–92 (ISSN 1521-3870, DOI 10.1002/malq.19600060105, lire en ligne, consulté le )
  6. Calvin C. Elgot, « Decision Problems of Finite Automata Design and Related Arithmetics », Transactions of the American Mathematical Society, vol. 98, no 1,‎ , p. 21–51 (DOI 10.2307/1993511, lire en ligne, consulté le )
  7. Boris A. Trakhtenbrot, « Finite automata and the logic of monadic predicates », Dokl. Akad Nauk SSSR 140,‎ , p. 326-329
  8. (en) Mark Weyer, Automata Logics, and Infinite Games, Springer, Berlin, Heidelberg, coll. « Lecture Notes in Computer Science », (ISBN 3-540-36387-4, DOI 10.1007/3-540-36387-4_12, lire en ligne), p. 207–230, Theorem 12.26
  9. S. C. Kleene, « Representation of events in nerve nets and finite automata. », dans C.E. Shannon and J. McCarthy, Automata Studies, vol. 34, Princeton, N. J., Princeton University Press, coll. « Annals of Mathematics Studies », (lire en ligne), p. 3 -- 41.
  10. Rabin et Scott (1959).

Bibliographie modifier

  • Dominique Perrin, « Les débuts de la théorie des automates », Technique et science informatiques, vol. 14, no 4,‎ , p. 409-433 (lire en ligne)
  • Françoise Dejean et Marcel-Paul Schützenberger, « On a Question of Eggan », Information and Control, vol. 9, no 1,‎ , p. 23-2
  • (en) John E. Hopcroft et Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison Wesley, (ISBN 0-201-02988-X)
  • Olivier Carton, Langages formels, calculabilité et complexité, [détail de l’édition] (lire en ligne)
  • (en) Michael O. Rabin et Dana Scott, « Finite automata and their decision problems », IBM J. Res. Develop., vol. 3,‎ , p. 114-125
  • Jacques Sakarovitch, Éléments de théorie des automates, Vuibert, , 816 p. (ISBN 978-2-7117-4807-5)
    Traduction anglaise avec corrections: Elements of Automata Theory, Cambridge University Press 2009, (ISBN 9780521844253)