Fonction zêta de Weierstrass

En mathématiques, les fonctions de Weierstrass sont des fonctions spéciales d'une variable complexe qui sont reliées à la fonction elliptique de Weierstrass .

Fonction sigma de WeierstrassModifier

La fonction sigma de Weierstrass associée à un réseau bidimensionnel   est définie comme le produit infini

 

Fonction zêta de WeierstrassModifier

La fonction zêta de Weierstrass est définie par

 

La fonction est une dérivation logarithmique de la fonction sigma. La fonction zêta peut être ré-écrite comme :

 

  est la série d'Eisenstein de poids 2k+2.

La dérivée de la fonction zêta est  

Fonction êta de WeierstrassModifier

La fonction êta de Weierstrass est définie par

  et tout w dans le réseau  

Cette fonction est bien définie, i.e.   ne dépend que du vecteur w.

La fonction êta de Weierstrass ne doit pas être confondue avec la fonction êta de Dedekind.

Liens externesModifier