Ouvrir le menu principal
Page d'aide sur l'homonymie Pour l’article homonyme, voir Courbe de Lorenz.
Fonction lorentzienne pour x0 = 0, Γ = 1

Une fonction lorentzienne, ou courbe lorentzienne — du nom de Hendrik Lorentz — est une fonction de la forme suivante :

C'est l'expression la plus simple d'une lorentzienne, centrée en x=0.

Une forme paramétrée par l'abscisse x0 du sommet et la largeur Γ à mi-hauteur (couramment appelée largeur de la lorentzienne) est la fonction L définie par :

En son sommet, elle atteint :

C'est une courbe en cloche.

En théorie des probabilités, elle est la densité de probabilité de la loi appelée loi de Cauchy (à un préfacteur de normalisation près).

Sommaire

Transformée de FourierModifier

Sa transformée de Fourier est

 

ApplicationsModifier

En spectrométrie d'émission ou d'absorption, une raie correspond à l'énergie de transition entre deux niveaux d'énergie. Le spectre devrait donc présenter une bande de fréquence (ou d'énergie) infiniment mince (signal monochromatique). Dans les faits, cette raie a une certaine largeur. Dans le cas d'un gaz, une fonction lorentzienne permet de modéliser la largeur de cette raie (dans un spectre en fréquences) en raison des collisions entre les molécules (élargissement lorentzien) : l'élargissement de la raie est dû à un raccourcissement de la durée d'émission induit par les chocs.

En diffractométrie de rayons X, une fonction lorentzienne permet de décrire le profil des pics de diffraction si l'on considère un effet de taille de cristallites (loi de Scherrer).

Dans les bruits électroniques basse fréquence, le bruit de génération-recombinaison (bruit GR) suit une loi lorentzienne.

Voir aussiModifier

Articles connexesModifier

Liens externesModifier