Fonction de Mertens

En théorie des nombres, la fonction de Mertens est

μ est la fonction de Möbius.

Moins formellement, M(n) est le nombre d'entiers sans facteur carré inférieurs ou égaux à n et dont le nombre de facteurs premiers est pair, moins le nombre d'entiers sans facteur carré inférieurs ou égaux à n et dont le nombre de facteurs premiers est impair.

CroissanceModifier

Puisque la fonction de Möbius ne prend que les valeurs –1, 0 et +1, il est évident qu'il n'existe pas de x tel que |M(x)| > x. La conjecture de Mertens (1897) va même plus loin, énonçant qu'il n'existerait pas de x où la valeur absolue de la fonction de Mertens excède la racine carrée de x.

Andrew Odlyzko et Herman te Riele ont montré en 1985 que cette conjecture était fausse[1]. Leur preuve ne produisait pas un contre-exemple explicite, mais on sait aujourd'hui que le plus petit contre-exemple est plus grand[2] que 1014 et plus petit[3] que exp(1,59.1040).

Néanmoins, l'hypothèse de Riemann est équivalente à une conjecture plus faible sur la croissance de M(x), explicitement : pour tout ε >0, M(x) = O(x12 + ε), où O désigne la notation de Landau. Puisque les pics de M croissent au moins aussi rapidement que la racine carrée de x, ceci place une limite plutôt serrée sur le taux de croissance.

Représentations intégralesModifier

En utilisant le produit eulérien, on trouve que

 

ζ est la fonction zêta de Riemann et le produit pris sur les nombres premiers. Alors, en utilisant cette série de Dirichlet avec la formule de Perron, on obtient :

 

C est une courbe fermée encerclant toutes les racines de ζ.

Inversement, on a la transformée de Mellin

 

qui reste valable pour Re(s) > 1.

Une bonne évaluation, au moins asymptotiquement, serait d'obtenir, par l'algorithme du gradient, une inégalité :

 

CalculModifier

La fonction de Mertens a été calculée pour un intervalle de plus en plus grand de n.

Personne Année Limite
Mertens 1897 104
von Sterneck 1897 1,5 × 105
von Sterneck 1901 5 × 105
von Sterneck 1912 5 × 106
Neubauer 1963 108
Cohen et Dress 1979 7,8 × 109
Dress 1993 1012
Lioen et van de Lune 1994 1013
Kotnik et van de Lune 2003 1014
Hurst 2016 1016

Notes et référencesModifier

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Mertens function » (voir la liste des auteurs).
  1. (en) A. Odlyzko et H. J. J. te Riele, « Disproof of the Mertens conjecture », J. reine angew. Math., vol. 357,‎ , p. 138-160.
  2. (en) T. Kotnik et J. van de Lune, « On the order of the Mertens function », Experimental Mathematics, vol. 13,‎ 2004), p. 473-481 (lire en ligne [PDF]).
  3. (en) T. Kotnik et Herman te Riele, « The Mertens Conjecture Revisited », dans Proceedings of the 7th Algorithmic Number Theory Symposium, coll. « Lecture Notes in Computer Science » (no 4 076), , p. 156-167.

Liens externesModifier